Câu hỏi Đáp án 3 năm trước 93

Một khối chóp tam giác có cạnh đáy bằng 6, 8, 10. Một cạnh bên có độ dài bằng \(4\) và tạo với đáy góc \({60^0}\). Thể tích của khối chóp đó là:

A. \(16\)

B. \(8\sqrt 3 \)  

C. \(48\sqrt 3 \)

D. \(16\sqrt 3 \)

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: d

Xét tam giác \(ABC\), giả sử \(AB = 6,\,\,BC = 8,\,\,AC = 10\) ta có \(A{B^2} + B{C^2} = A{C^2}\,\,\left( { = 100} \right)\) nên tam giác \(ABC\) vuông tại \(B\) (định lí Pytago đảo) \( \Rightarrow {S_{\Delta ABC}} = \dfrac{1}{2}AB.BC = \dfrac{1}{2}.6.8 = 24\).

Gọi \(H\) là hình chiếu vuông góc của \(S\) lên \(\left( {ABC} \right)\) và giả sử \(SA\) hợp với đáy góc \({60^0}\) \( \Rightarrow HA\) là hình chiếu của \(SA\) lên \(\left( {ABC} \right)\) nên \(\angle \left( {SA;\left( {ABC} \right)} \right) = \angle \left( {SA;HA} \right) = \angle SAH = {60^0}\).

\( \Rightarrow SH = SA.\sin {60^0} = 4.\dfrac{{\sqrt 3 }}{2} = 2\sqrt 3 \).

Vậy \({V_{S.ABC}} = \dfrac{1}{3}SH.{S_{\Delta ABC}} = \dfrac{1}{3}.2\sqrt 3 .24 = 16\sqrt 3 \).

Hướng dẫn giải:

- Sử dụng định lí Pytago đảo chứng minh đáy là tam giác vuông, từ đó tính diện tích đáy.

- Xác định góc giữa cạnh bên và mặt đáy là góc giữa cạnh bên và hình chiếu của cạnh bên đó trên mặt đáy, từ đó sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông tính chiều cao của khối chóp.

- Sử dụng công thức tính thể tích khối chóp có chiều cao \(h\), diện tích đáy \(B\) là \(V = \dfrac{1}{3}Bh\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp tứ giác đều $S.ABCD$ có chiều cao $h$, góc ở đỉnh của mặt bên bằng \({60^0}\). Thể tích hình chóp là:

Xem lời giải » 3 năm trước 104
Câu 2: Trắc nghiệm

Đề thi THPT QG - 2021 - mã 101

Cho khối hộp chữ nhật \(ABCD.A'B'C'D'\) có đáy là hình vuông, \(BD = 2a,\) góc giữa hai mặt phẳng \(\left( {A'B{\rm{D}}} \right)\) và \(\left( {ABCD} \right)\) bằng \({30^0}\). Thể tích của khối hộp chữ nhật đã cho bằng

Xem lời giải » 3 năm trước 102
Câu 3: Trắc nghiệm

Mệnh đề nào sau đây là mệnh đề đúng? 

Xem lời giải » 3 năm trước 100
Câu 4: Trắc nghiệm

Cho đoạn thẳng \(AB\). Mặt phẳng \(\left( P \right)\) là mặt phẳng trung trực của \(AB\) thì:

Xem lời giải » 3 năm trước 98
Câu 5: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Đường thẳng \(SC\) tạo với đáy góc \({45^0}\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\). Thể tích của khối chóp \(S.MCDN\) là:

Xem lời giải » 3 năm trước 96
Câu 6: Trắc nghiệm

Lăng trụ đứng tứ giác có đáy là hình thoi mà các đường chéo là \(6cm\) và \(8cm\), biết rằng chu vi đáy bằng 2 lần chiều cao lăng trụ. Tính thể tích khối lăng trụ

Xem lời giải » 3 năm trước 92
Câu 7: Trắc nghiệm

Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Xem lời giải » 3 năm trước 88
Câu 8: Trắc nghiệm

Cho khối chóp có thể tích \(V\), diện tích đáy là \(S\) và chiều cao \(h\). Chọn công thức đúng:

Xem lời giải » 3 năm trước 88
Câu 9: Trắc nghiệm

Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?

Xem lời giải » 3 năm trước 86
Câu 10: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình thang vuông tại \(A\) và \(D\) thỏa mãn \(SA \bot \left( {ABCD} \right)\) và \(AB = 2AD = 2CD = 2a = \sqrt 2 SA\). Thể tích khối chóp \(S.BCD\) là:

Xem lời giải » 3 năm trước 86
Câu 11: Trắc nghiệm

Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất:

Xem lời giải » 3 năm trước 85
Câu 12: Trắc nghiệm

Cho hình chóp đều $S.ABCD$ có diện tích đáy là \(16c{m^2}\), diện tích một mặt bên là \(8\sqrt 3 c{m^2}\). Thể tích khối chóp $S.ABCD$ là:

Xem lời giải » 3 năm trước 84
Câu 13: Trắc nghiệm

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh bằng \(\sqrt 6 \). Biết rằng các mặt bên của hình chóp có diện tích bằng nhau và một trong các cạnh bên bằng \(3\sqrt 2 \). Tính thể tích nhỏ nhất của khối chóp \(S.ABC\)

Xem lời giải » 3 năm trước 83
Câu 14: Trắc nghiệm

Cho lăng trụ $ABC.A'B'C'$ có đáy $ABC$  là tam giác đều cạnh $a$, và \(A'A = A'B = A'C = a\sqrt {\dfrac{7}{{12}}} \) . Thể tích khối lăng trụ \(ABC.A'B'C'\) theo $a$ là:

Xem lời giải » 3 năm trước 83
Câu 15: Trắc nghiệm

Đa diện đều loại \(\left\{ {5;3} \right\}\) có tên gọi nào dưới đây?

Xem lời giải » 3 năm trước 83

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »