Câu hỏi Đáp án 3 năm trước 84

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh bằng \(\sqrt 6 \). Biết rằng các mặt bên của hình chóp có diện tích bằng nhau và một trong các cạnh bên bằng \(3\sqrt 2 \). Tính thể tích nhỏ nhất của khối chóp \(S.ABC\)

A. \(3\)

Đáp án chính xác ✅

B. \(2\sqrt 2 \)

C. \(2\sqrt 3 \)

D. \(4\)

Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: a

Gọi \(M,\,\,N,\,\,P\) lần lượt là hình chiếu của điểm \(S\) lên \(AB,\,\,BC,\,\,AC\) ta có:

\(\begin{array}{l}\,\,\,\,\,{S_{\Delta ABC}} = {S_{\Delta BCA}} = {S_{\Delta CAB}}\\ \Rightarrow \dfrac{1}{2}SM.AB = \dfrac{1}{2}SN.BC = \dfrac{1}{2}SP.CA\end{array}\)

Mà \(AB = BC = CA\,\,\left( {gt} \right) \Rightarrow SM = SN = SP\).

Gọi \(O\) là hình chiếu của \(S\) lên \(\left( {ABC} \right)\), ta có: \(\left\{ \begin{array}{l}AB \bot SM\\AB \bot SO\end{array} \right. \Rightarrow AB \bot \left( {SOM} \right) \Rightarrow AB \bot OM\).

CMTT ta có \(ON \bot BC,\,\,OP \bot AC\).

Xét các tam giác vuông \(\Delta SOM,\,\,\Delta SON,\,\,\Delta SOP\) có:

\(\begin{array}{l}SO\,\,chung\\SM = SN = SP\,\,\left( {cmt} \right)\end{array}\)

\( \Rightarrow \Delta SOM = \Delta SON = \Delta SOP\) (cạnh huyền – cạnh góc vuông)

\( \Rightarrow OM = ON = OP\), suy ra \(O\) cách đều các cạnh \(AB,\,\,BC,\,\,CA\) nên \(O\) là tâm đường tròn nội tiếp \(\Delta ABC\) hoặc \(O\) là tâm đường tròn bàng tiếp \(\Delta ABC\).

+ TH1: \(O\) là tâm đường tròn nội tiếp \(\Delta ABC\). Mà \(\Delta ABC\) đều nên \(O\) là đồng thời là trọng tâm tam giác đều \(ABC\). Khi đó ta có \(AN = \dfrac{{\sqrt 6 .\sqrt 3 }}{2} = \dfrac{{3\sqrt 2 }}{2},\,\,AO = \dfrac{2}{3}AN = \sqrt 2 \).

\( \Rightarrow SO = \sqrt {S{A^2} - A{O^2}}  = \sqrt {18 - 2}  = 4\).

\({S_{\Delta ABC}} = {\left( {\sqrt 6 } \right)^2}.\dfrac{{\sqrt 3 }}{4} = \dfrac{{3\sqrt 3 }}{2}\).

\( \Rightarrow {V_{S.ABC}} = \dfrac{1}{3}SO.{S_{\Delta ABC}} = \dfrac{1}{3}.4.\dfrac{{3\sqrt 3 }}{2} = 2\sqrt 3 \).

TH2: \(O\) là tâm đường tròn bàng tiếp \(\Delta ABC\).

Gọi \(R\) là bán kính đường tròn bàng tiếp tam giác \(ABC\), \(p\) là nửa chu vi tam giác \(ABC\) \( \Rightarrow p = \dfrac{{3\sqrt 6 }}{2}\).

Khi đó ta có \({S_{ABC}} = \left( {p - BC} \right).R\) \( \Rightarrow {\left( {\sqrt 6 } \right)^2}.\dfrac{{\sqrt 3 }}{4} = \left( {\dfrac{{3\sqrt 6 }}{2} - \sqrt 6 } \right).R \Leftrightarrow R = \dfrac{{3\sqrt 2 }}{2}\).

Có \(AN = \dfrac{{\sqrt 6 .\sqrt 3 }}{2} = \dfrac{{3\sqrt 2 }}{2}\) \( \Rightarrow OA = AN + ON = 3\sqrt 2 \).

\( \Rightarrow SA > OA = 3\sqrt 2 \) (quan hệ giữa đường vuông góc và đường xiên)

\( \Rightarrow SB = 3\sqrt 2 \).

Áp dụng định lí Pytago trong tam giác vuông \(OBM\) có: \(OB = \sqrt {O{M^2} + B{M^2}}  = \sqrt {{{\left( {\dfrac{{3\sqrt 2 }}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 6 }}{2}} \right)}^2}}  = \sqrt 6 \).

Áp dụng định lí Pytago trong tam giác vuông \(SOB\) có: \(SO = \sqrt {S{B^2} - O{B^2}}  = \sqrt {{{\left( {3\sqrt 2 } \right)}^2} - {{\left( {\sqrt 6 } \right)}^2}}  = 2\sqrt 3 \).

Khi đó ta có \({V_{S.ABC}} = \dfrac{1}{3}.SO.{S_{ABC}} = \dfrac{1}{3}.2\sqrt 3 .{\left( {\sqrt 6 } \right)^2}.\dfrac{{\sqrt 3 }}{4} = 3\).

Vậy \(\min {V_{S.ABC}} = 3\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp tứ giác đều $S.ABCD$ có chiều cao $h$, góc ở đỉnh của mặt bên bằng \({60^0}\). Thể tích hình chóp là:

Xem lời giải » 3 năm trước 105
Câu 2: Trắc nghiệm

Đề thi THPT QG - 2021 - mã 101

Cho khối hộp chữ nhật \(ABCD.A'B'C'D'\) có đáy là hình vuông, \(BD = 2a,\) góc giữa hai mặt phẳng \(\left( {A'B{\rm{D}}} \right)\) và \(\left( {ABCD} \right)\) bằng \({30^0}\). Thể tích của khối hộp chữ nhật đã cho bằng

Xem lời giải » 3 năm trước 103
Câu 3: Trắc nghiệm

Mệnh đề nào sau đây là mệnh đề đúng? 

Xem lời giải » 3 năm trước 102
Câu 4: Trắc nghiệm

Cho đoạn thẳng \(AB\). Mặt phẳng \(\left( P \right)\) là mặt phẳng trung trực của \(AB\) thì:

Xem lời giải » 3 năm trước 99
Câu 5: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Đường thẳng \(SC\) tạo với đáy góc \({45^0}\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\). Thể tích của khối chóp \(S.MCDN\) là:

Xem lời giải » 3 năm trước 97
Câu 6: Trắc nghiệm

Một khối chóp tam giác có cạnh đáy bằng 6, 8, 10. Một cạnh bên có độ dài bằng \(4\) và tạo với đáy góc \({60^0}\). Thể tích của khối chóp đó là:

Xem lời giải » 3 năm trước 93
Câu 7: Trắc nghiệm

Lăng trụ đứng tứ giác có đáy là hình thoi mà các đường chéo là \(6cm\) và \(8cm\), biết rằng chu vi đáy bằng 2 lần chiều cao lăng trụ. Tính thể tích khối lăng trụ

Xem lời giải » 3 năm trước 93
Câu 8: Trắc nghiệm

Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Xem lời giải » 3 năm trước 89
Câu 9: Trắc nghiệm

Cho khối chóp có thể tích \(V\), diện tích đáy là \(S\) và chiều cao \(h\). Chọn công thức đúng:

Xem lời giải » 3 năm trước 89
Câu 10: Trắc nghiệm

Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?

Xem lời giải » 3 năm trước 88
Câu 11: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình thang vuông tại \(A\) và \(D\) thỏa mãn \(SA \bot \left( {ABCD} \right)\) và \(AB = 2AD = 2CD = 2a = \sqrt 2 SA\). Thể tích khối chóp \(S.BCD\) là:

Xem lời giải » 3 năm trước 87
Câu 12: Trắc nghiệm

Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất:

Xem lời giải » 3 năm trước 86
Câu 13: Trắc nghiệm

Cho hình chóp đều $S.ABCD$ có diện tích đáy là \(16c{m^2}\), diện tích một mặt bên là \(8\sqrt 3 c{m^2}\). Thể tích khối chóp $S.ABCD$ là:

Xem lời giải » 3 năm trước 85
Câu 14: Trắc nghiệm

Đa diện đều loại \(\left\{ {5;3} \right\}\) có tên gọi nào dưới đây?

Xem lời giải » 3 năm trước 84
Câu 15: Trắc nghiệm

Cho lăng trụ $ABC.A'B'C'$ có đáy $ABC$  là tam giác đều cạnh $a$, và \(A'A = A'B = A'C = a\sqrt {\dfrac{7}{{12}}} \) . Thể tích khối lăng trụ \(ABC.A'B'C'\) theo $a$ là:

Xem lời giải » 3 năm trước 84

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »