Cho tứ diện \(ABCD\) có \(AD = 14,BC = 6\). Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AC,BD\) và \(MN = 8\). Gọi \(\alpha \) là góc giữa hai đường thẳng \(BC\) và \(MN\). Tính \(\sin \alpha \).
A.
\(\dfrac{{2\sqrt 2 }}{3}\)
B.
\(\dfrac{{\sqrt 3 }}{2}\)
C.
\(\dfrac{1}{2}\)
D.
\(\dfrac{{\sqrt 2 }}{4}\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b

Gọi \(P\) là trung điểm của cạnh \(CD\), ta có \(\alpha = \widehat {\left( {MN,BC} \right)} = \widehat {\left( {MN,NP} \right)}\).
Trong tam giác \(MNP\), ta có \(\cos \widehat {MNP} = \dfrac{{M{N^2} + P{N^2} - M{P^2}}}{{2MN.NP}} = \dfrac{1}{2}\). Suy ra \(\widehat {MNP} = 60^\circ \).
Suy ra \(\sin \alpha = \dfrac{{\sqrt 3 }}{2}\).
Hướng dẫn giải:
- Dựng góc \(\alpha \) bằng cách tìm một đường thẳng song song với \(BC\) mà góc giữa đường thẳng ấy và \(MN\) là dễ nhận thấy.
- Tính góc \(\alpha \) bằng cách sử dụng định lý hàm số \(\cos \)
Gọi \(P\) là trung điểm của cạnh \(CD\), ta có \(\alpha = \widehat {\left( {MN,BC} \right)} = \widehat {\left( {MN,NP} \right)}\).
Trong tam giác \(MNP\), ta có \(\cos \widehat {MNP} = \dfrac{{M{N^2} + P{N^2} - M{P^2}}}{{2MN.NP}} = \dfrac{1}{2}\). Suy ra \(\widehat {MNP} = 60^\circ \).
Suy ra \(\sin \alpha = \dfrac{{\sqrt 3 }}{2}\).
Hướng dẫn giải:
- Dựng góc \(\alpha \) bằng cách tìm một đường thẳng song song với \(BC\) mà góc giữa đường thẳng ấy và \(MN\) là dễ nhận thấy.
- Tính góc \(\alpha \) bằng cách sử dụng định lý hàm số \(\cos \)
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị lớn nhất của hàm số $y = x - \dfrac{1}{x}$ trên $\left( { - \infty ; - 1} \right]$ là:
Hai hình chóp tam giác đều có chung đáy là tam giác đều và đỉnh thuộc hai phía khác nhau so với mặt đáy. Hai hình này bằng nhau khi:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:

Với các giá trị thực của tham số \(m\), phương trình \(f\left( x \right)=m\) có nhiều nhất bao nhiêu nghiệm?
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?

Khối đa diện lồi có \(8\) đỉnh và \(6\) mặt thì có số cạnh là:
Tìm tất cả các giá trị của $m$ để hàm số $y = \dfrac{{m{x^3}}}{3} - m{x^2} + x - 1$ có cực đại và cực tiểu.
Cho điểm $I\left( {0;4} \right)$ và đường cong $\left( C \right):y = - {x^2} + 3x$. Phương trình $\left( C \right)$ đối với hệ tọa độ $\left( {IXY} \right)$ là:
Đồ thị hàm số $y = \dfrac{{2x + b}}{{cx + d}}$ như hình vẽ bên

Chọn khẳng định đúng:
Cho lăng trụ đều \(ABC.A'B'C'\), cạnh đáy bằng a, góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \). Tính thể tích khối lăng trụ đó.
Đồ thị hàm số \(y = \dfrac{{2x + b}}{{cx + d}}\) như hình vẽ bên:

Chọn kết luận đúng:
Tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{x - 1}}{{ - 3x + 2}}\) là?
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Trong các hàm số dưới đây, hàm số nào không đồng biến trên $R?$