Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Ta có:
\(\begin{array}{l}P = {\log _{\dfrac{a}{{{b^2}}}}}x = \dfrac{{{{\log }_a}x}}{{{{\log }_a}\dfrac{a}{{{b^2}}}}} = \dfrac{2}{{1 - 2{{\log }_a}b}}\\\,\,\,\, = \dfrac{2}{{1 - 2.\dfrac{{{{\log }_x}b}}{{{{\log }_x}a}}}} = \dfrac{2}{{1 - 2.\dfrac{{{{\log }_a}x}}{{{{\log }_b}x}}}}\\\,\,\, = \dfrac{2}{{1 - 2.\dfrac{2}{3}}} = \dfrac{2}{{ - \dfrac{1}{3}}} = - 6\end{array}\) \(\left( {x > 0,x \ne 1;\,\,a,b > 1} \right)\)
Hướng dẫn giải:
Sử dụng các công thức biến đổi logarit:
\(\begin{array}{l}{\log _a}b = \dfrac{{{{\log }_c}b}}{{{{\log }_c}a}}\,\,\left( {0 < a,c\, \ne 1,\,\,b > 0} \right)\\{\log _a}x - {\log _a}y = {\log _a}\dfrac{x}{y}\,\,\left( {0 < a \ne 1,\,x,\,\,y > 0} \right)\\{\log _a}b = \dfrac{1}{{{{\log }_b}a}}\,\,\left( {0 < a,b \ne 1} \right)\end{array}\)
Ta có:
\(\begin{array}{l}P = {\log _{\dfrac{a}{{{b^2}}}}}x = \dfrac{{{{\log }_a}x}}{{{{\log }_a}\dfrac{a}{{{b^2}}}}} = \dfrac{2}{{1 - 2{{\log }_a}b}}\\\,\,\,\, = \dfrac{2}{{1 - 2.\dfrac{{{{\log }_x}b}}{{{{\log }_x}a}}}} = \dfrac{2}{{1 - 2.\dfrac{{{{\log }_a}x}}{{{{\log }_b}x}}}}\\\,\,\, = \dfrac{2}{{1 - 2.\dfrac{2}{3}}} = \dfrac{2}{{ - \dfrac{1}{3}}} = - 6\end{array}\) \(\left( {x > 0,x \ne 1;\,\,a,b > 1} \right)\)
Hướng dẫn giải:
Sử dụng các công thức biến đổi logarit:
\(\begin{array}{l}{\log _a}b = \dfrac{{{{\log }_c}b}}{{{{\log }_c}a}}\,\,\left( {0 < a,c\, \ne 1,\,\,b > 0} \right)\\{\log _a}x - {\log _a}y = {\log _a}\dfrac{x}{y}\,\,\left( {0 < a \ne 1,\,x,\,\,y > 0} \right)\\{\log _a}b = \dfrac{1}{{{{\log }_b}a}}\,\,\left( {0 < a,b \ne 1} \right)\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = f\left( x \right)$ xác định, liên tục trên $R$ có bảng biến thiên:

Bảng biến thiên trên là bảng biến thiên của hàm số nào?
Cho mặt cầu \(S\left( {I;R} \right)\) và mặt phẳng \(\left( P \right)\) cách I một khoảng bằng \(\frac{R}{2}\). Khi đó giao của \(\left( P \right)\) và \(\left( S \right)\) là đường tròn có chu vi bằng:
Cho mặt cầu \(\left( S \right)\) và mặt phẳng \(\left( P \right)\) cắt nhau tại nhiều hơn một điểm. Giao tuyến của chúng là:
Tâm đối xứng của đồ thị hàm số bậc ba có hoành độ là nghiệm của phương trình
Cho hàm số \(y = f\left( x \right)\) đồng biến và có đạo hàm trên \(\left( { - 5;5} \right)\). Khi đó:
Tính thể tích \(V\) của khối trụ ngoại tiếp hình lập phương có cạnh bằng $a$.
Cho một mặt cầu bán kính bằng $1$. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu?
Cho hàm số $y = - {x^3} + 3m{x^2} - 3m - 1$ với \(m\) là tham số thực. Tìm giá trị của \(m\) để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng $d:x + 8y - 74 = 0$.
Tìm $m$ để phương trình ${x^5} + {x^3} - \sqrt {1 - x} + m = 0$ có nghiệm trên $\left( { - \infty ;1} \right]$.
Một người gửi vào ngân hàng số tiền $A$ đồng, lãi suất $r\% $ mỗi tháng theo hình thức lãi kép, gửi theo phương thức có kì hạn $3$ tháng. Công thức tính số tiền cả vốn lẫn lãi mà người đó có sau $2$ năm là:
Gọi $m$ là giá trị nhỏ nhất của hàm số $y = x - 1 + \dfrac{4}{{x - 1}}$ trên khoảng $\left( {1; + \infty {\rm{\;}}} \right)$. Tìm $m?$
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng
Công thức tính thể tích khối nón biết diện tích đáy \({S_d}\) và đường sinh \(l\) là:
