Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(A{A_1}\). Thể tích khối chóp \(M.BC{A_1}\) là:
A.
\(\dfrac{{{a^3}\sqrt 3 }}{{12}}\)
B.
\(\dfrac{{{a^3}\sqrt 3 }}{{24}}\)
C.
\(\dfrac{{{a^3}\sqrt 3 }}{6}\)
D.
\(\dfrac{{{a^3}\sqrt 3 }}{8}\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b

$\Delta ABC$ là tam giác đều cạnh $a$ nên có diện tích ${S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}$
Ta có $AM = \dfrac{{A{A_1}}}{2} = \dfrac{a}{2}$
Hai tứ diện $MABC$ và $M{A_1}BC$ có chung đỉnh $C$, diện tích hai đáy $MAB$ và $M{A_1}B$ bằng nhau nên có thể tích bằng nhau, suy ra
${V_{M.BC{A_1}}} = {V_{M.ABC}} = \dfrac{1}{3}AM.{S_{ABC}} = \dfrac{{{a^3}\sqrt 3 }}{{24}}$
Hướng dẫn giải:
- Chứng minh thể tích hai khối tứ diện $MABC$ và $M{A_1}BC$ có thể tích bằng nhau.
- Tính thể tích khối tứ diện $MABC$ và suy ra đáp án.
$\Delta ABC$ là tam giác đều cạnh $a$ nên có diện tích ${S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}$
Ta có $AM = \dfrac{{A{A_1}}}{2} = \dfrac{a}{2}$
Hai tứ diện $MABC$ và $M{A_1}BC$ có chung đỉnh $C$, diện tích hai đáy $MAB$ và $M{A_1}B$ bằng nhau nên có thể tích bằng nhau, suy ra
${V_{M.BC{A_1}}} = {V_{M.ABC}} = \dfrac{1}{3}AM.{S_{ABC}} = \dfrac{{{a^3}\sqrt 3 }}{{24}}$
Hướng dẫn giải:
- Chứng minh thể tích hai khối tứ diện $MABC$ và $M{A_1}BC$ có thể tích bằng nhau.
- Tính thể tích khối tứ diện $MABC$ và suy ra đáp án.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = f\left( x \right)$ xác định, liên tục trên $R$ có bảng biến thiên:

Bảng biến thiên trên là bảng biến thiên của hàm số nào?
Cho mặt cầu \(S\left( {I;R} \right)\) và mặt phẳng \(\left( P \right)\) cách I một khoảng bằng \(\frac{R}{2}\). Khi đó giao của \(\left( P \right)\) và \(\left( S \right)\) là đường tròn có chu vi bằng:
Cho mặt cầu \(\left( S \right)\) và mặt phẳng \(\left( P \right)\) cắt nhau tại nhiều hơn một điểm. Giao tuyến của chúng là:
Tâm đối xứng của đồ thị hàm số bậc ba có hoành độ là nghiệm của phương trình
Cho hàm số \(y = f\left( x \right)\) đồng biến và có đạo hàm trên \(\left( { - 5;5} \right)\). Khi đó:
Tính thể tích \(V\) của khối trụ ngoại tiếp hình lập phương có cạnh bằng $a$.
Cho một mặt cầu bán kính bằng $1$. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu?
Cho hàm số $y = - {x^3} + 3m{x^2} - 3m - 1$ với \(m\) là tham số thực. Tìm giá trị của \(m\) để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng $d:x + 8y - 74 = 0$.
Tìm $m$ để phương trình ${x^5} + {x^3} - \sqrt {1 - x} + m = 0$ có nghiệm trên $\left( { - \infty ;1} \right]$.
Một người gửi vào ngân hàng số tiền $A$ đồng, lãi suất $r\% $ mỗi tháng theo hình thức lãi kép, gửi theo phương thức có kì hạn $3$ tháng. Công thức tính số tiền cả vốn lẫn lãi mà người đó có sau $2$ năm là:
Gọi $m$ là giá trị nhỏ nhất của hàm số $y = x - 1 + \dfrac{4}{{x - 1}}$ trên khoảng $\left( {1; + \infty {\rm{\;}}} \right)$. Tìm $m?$
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng
Công thức tính thể tích khối nón biết diện tích đáy \({S_d}\) và đường sinh \(l\) là:
