Cho khối lăng trụ đứng \(ABC.A'B'C'\) có đáy ABC là tam giác vuông tại B với \(AB = a,AA' = 2a,\)\(A'C = 3a\) . Gọi M là trung điểm của \(A'C'\), I là giao điểm của đường thẳng AM và A’C. Tính theo a thể tích khối IABC .
A.
\(V = \dfrac{2}{3}{a^3}\)
B.
\(V = \dfrac{2}{9}{a^3}\)
C.
\(V = \dfrac{4}{9}{a^3}\)
D.
\(V = \dfrac{4}{3}{a^3}\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c

Ta có: \(A'M//AC \Rightarrow \dfrac{{A'M}}{{AC}} = \dfrac{{A'I}}{{IC}} = \dfrac{1}{2} \Rightarrow \dfrac{{IC}}{{A'C}} = \dfrac{2}{3}\)
\(IA' \cap \left( {ABC} \right) = C \Rightarrow \dfrac{{d\left( {I;\left( {ABC} \right)} \right)}}{{d\left( {A';\left( {ABC} \right)} \right)}} = \dfrac{{IC}}{{A'C}} = \dfrac{2}{3}\)
\(\dfrac{{{V_{I.ABC}}}}{{{V_{ABC.A'B'C'}}}} = \dfrac{{\dfrac{1}{3}d\left( {I;\left( {ABC} \right)} \right).{S_{ABC}}}}{{d\left( {A';\left( {ABC} \right)} \right).{S_{ABC}}}} = \dfrac{1}{3}.\dfrac{2}{3} = \dfrac{2}{9} \Rightarrow {V_{I.ABC}} = \dfrac{2}{9}{V_{ABC.A'B'C'}}\)
$AA' \bot \left( {ABC} \right) \Rightarrow AA' \bot AC \Rightarrow \Delta AA'C$ vuông tại A\( \Rightarrow AC = \sqrt {A'{C^2} - AA{'^2}} = \sqrt {9{a^2} - 4{a^2}} = a\sqrt 5 \)
Xét tam giác vuông ABC có: $BC = \sqrt {A{C^2} - A{B^2}} = \sqrt {5{a^2} - {a^2}} = 2a$
\( \Rightarrow {S_{ABC}} = \dfrac{1}{2}AB.BC = \dfrac{1}{2}a.2a = {a^2}\)
\( \Rightarrow {V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = 2a.{a^2} = 2{a^3}\)
\( \Rightarrow {V_{I.ABC}} = \dfrac{2}{9}{V_{ABC.A'B'C'}} = \dfrac{2}{9}.2{a^3} = \dfrac{{4{a^3}}}{9}\)
Hướng dẫn giải:
+) So sánh thể tích của khối tứ diện I.ABC với thể tích của khối lăng trụ
+) Tính thể tích khối lăng trụ.
Ta có: \(A'M//AC \Rightarrow \dfrac{{A'M}}{{AC}} = \dfrac{{A'I}}{{IC}} = \dfrac{1}{2} \Rightarrow \dfrac{{IC}}{{A'C}} = \dfrac{2}{3}\)
\(IA' \cap \left( {ABC} \right) = C \Rightarrow \dfrac{{d\left( {I;\left( {ABC} \right)} \right)}}{{d\left( {A';\left( {ABC} \right)} \right)}} = \dfrac{{IC}}{{A'C}} = \dfrac{2}{3}\)
\(\dfrac{{{V_{I.ABC}}}}{{{V_{ABC.A'B'C'}}}} = \dfrac{{\dfrac{1}{3}d\left( {I;\left( {ABC} \right)} \right).{S_{ABC}}}}{{d\left( {A';\left( {ABC} \right)} \right).{S_{ABC}}}} = \dfrac{1}{3}.\dfrac{2}{3} = \dfrac{2}{9} \Rightarrow {V_{I.ABC}} = \dfrac{2}{9}{V_{ABC.A'B'C'}}\)
$AA' \bot \left( {ABC} \right) \Rightarrow AA' \bot AC \Rightarrow \Delta AA'C$ vuông tại A\( \Rightarrow AC = \sqrt {A'{C^2} - AA{'^2}} = \sqrt {9{a^2} - 4{a^2}} = a\sqrt 5 \)
Xét tam giác vuông ABC có: $BC = \sqrt {A{C^2} - A{B^2}} = \sqrt {5{a^2} - {a^2}} = 2a$
\( \Rightarrow {S_{ABC}} = \dfrac{1}{2}AB.BC = \dfrac{1}{2}a.2a = {a^2}\)
\( \Rightarrow {V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = 2a.{a^2} = 2{a^3}\)
\( \Rightarrow {V_{I.ABC}} = \dfrac{2}{9}{V_{ABC.A'B'C'}} = \dfrac{2}{9}.2{a^3} = \dfrac{{4{a^3}}}{9}\)
Hướng dẫn giải:
+) So sánh thể tích của khối tứ diện I.ABC với thể tích của khối lăng trụ
+) Tính thể tích khối lăng trụ.
CÂU HỎI CÙNG CHỦ ĐỀ
Khối đa diện lồi có \(8\) đỉnh và \(6\) mặt thì có số cạnh là:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?

Giá trị lớn nhất của hàm số $y = x - \dfrac{1}{x}$ trên $\left( { - \infty ; - 1} \right]$ là:
Hai hình chóp tam giác đều có chung đáy là tam giác đều và đỉnh thuộc hai phía khác nhau so với mặt đáy. Hai hình này bằng nhau khi:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:

Với các giá trị thực của tham số \(m\), phương trình \(f\left( x \right)=m\) có nhiều nhất bao nhiêu nghiệm?
Tìm tất cả các giá trị của $m$ để hàm số $y = \dfrac{{m{x^3}}}{3} - m{x^2} + x - 1$ có cực đại và cực tiểu.
Đồ thị hàm số $y = \dfrac{{2x + b}}{{cx + d}}$ như hình vẽ bên

Chọn khẳng định đúng:
Cho điểm $I\left( {0;4} \right)$ và đường cong $\left( C \right):y = - {x^2} + 3x$. Phương trình $\left( C \right)$ đối với hệ tọa độ $\left( {IXY} \right)$ là:
Tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{x - 1}}{{ - 3x + 2}}\) là?
Đồ thị hàm số \(y = \dfrac{{2x + b}}{{cx + d}}\) như hình vẽ bên:

Chọn kết luận đúng:
Cho lăng trụ đều \(ABC.A'B'C'\), cạnh đáy bằng a, góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \). Tính thể tích khối lăng trụ đó.
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Cho hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( { - 3;7} \right)\) và xác định tại hai điểm \(x = - 3;x = 7\). Chọn kết luận đúng: