Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d

Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AD,SA \bot AB \Rightarrow \Delta SAB,\Delta SAD\) vuông tại \(A\).
Lại có \(CD \bot SA,CD \bot AD \Rightarrow CD \bot \left( {SAD} \right) \Rightarrow CD \bot SD \Rightarrow \Delta SCD\) vuông tại $D.$
\(CB \bot SA,CB \bot AB \Rightarrow CB \bot \left( {SAB} \right) \Rightarrow CB \bot SB \Rightarrow \Delta SCB\) vuông tại \(B\).
Vậy có tất cả $4$ mặt là các tam giác vuông.
Hướng dẫn giải:
Dựng hình và tìm các tam giác vuông trong số bốn mặt bên của hình chóp.
Sử dụng định lý: “Đường thẳng vuông góc với hai đường thẳng cắt nhau thì nó vuông góc với mặt phẳng chứa hai đường thẳng đó”
Giải thích thêm:
Một số em không chú ý sẽ chọn nhầm đáp án B vì không xét các tam giác \(SCD,SCB\).

Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AD,SA \bot AB \Rightarrow \Delta SAB,\Delta SAD\) vuông tại \(A\).
Lại có \(CD \bot SA,CD \bot AD \Rightarrow CD \bot \left( {SAD} \right) \Rightarrow CD \bot SD \Rightarrow \Delta SCD\) vuông tại $D.$
\(CB \bot SA,CB \bot AB \Rightarrow CB \bot \left( {SAB} \right) \Rightarrow CB \bot SB \Rightarrow \Delta SCB\) vuông tại \(B\).
Vậy có tất cả $4$ mặt là các tam giác vuông.
Hướng dẫn giải:
Dựng hình và tìm các tam giác vuông trong số bốn mặt bên của hình chóp.
Sử dụng định lý: “Đường thẳng vuông góc với hai đường thẳng cắt nhau thì nó vuông góc với mặt phẳng chứa hai đường thẳng đó”
Giải thích thêm:
Một số em không chú ý sẽ chọn nhầm đáp án B vì không xét các tam giác \(SCD,SCB\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp tứ giác đều $S.ABCD$ có chiều cao $h$, góc ở đỉnh của mặt bên bằng \({60^0}\). Thể tích hình chóp là:
Đề thi THPT QG - 2021 - mã 101
Cho khối hộp chữ nhật \(ABCD.A'B'C'D'\) có đáy là hình vuông, \(BD = 2a,\) góc giữa hai mặt phẳng \(\left( {A'B{\rm{D}}} \right)\) và \(\left( {ABCD} \right)\) bằng \({30^0}\). Thể tích của khối hộp chữ nhật đã cho bằng
Cho đoạn thẳng \(AB\). Mặt phẳng \(\left( P \right)\) là mặt phẳng trung trực của \(AB\) thì:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Đường thẳng \(SC\) tạo với đáy góc \({45^0}\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\). Thể tích của khối chóp \(S.MCDN\) là:
Một khối chóp tam giác có cạnh đáy bằng 6, 8, 10. Một cạnh bên có độ dài bằng \(4\) và tạo với đáy góc \({60^0}\). Thể tích của khối chóp đó là:
Lăng trụ đứng tứ giác có đáy là hình thoi mà các đường chéo là \(6cm\) và \(8cm\), biết rằng chu vi đáy bằng 2 lần chiều cao lăng trụ. Tính thể tích khối lăng trụ
Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Cho khối chóp có thể tích \(V\), diện tích đáy là \(S\) và chiều cao \(h\). Chọn công thức đúng:
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình thang vuông tại \(A\) và \(D\) thỏa mãn \(SA \bot \left( {ABCD} \right)\) và \(AB = 2AD = 2CD = 2a = \sqrt 2 SA\). Thể tích khối chóp \(S.BCD\) là:
Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất:
Cho hình chóp đều $S.ABCD$ có diện tích đáy là \(16c{m^2}\), diện tích một mặt bên là \(8\sqrt 3 c{m^2}\). Thể tích khối chóp $S.ABCD$ là:
Đa diện đều loại \(\left\{ {5;3} \right\}\) có tên gọi nào dưới đây?
Cho lăng trụ $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh $a$, và \(A'A = A'B = A'C = a\sqrt {\dfrac{7}{{12}}} \) . Thể tích khối lăng trụ \(ABC.A'B'C'\) theo $a$ là: