Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Ta có \(y' = 3{x^2} - 6x - 9;{\rm{ }}y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1 \Rightarrow y = 5 + m\\x = 3 \Rightarrow y = - 27 + m\end{array} \right..\)
Suy ra tọa độ hai điểm cực trị là \(A\left( { - 1;5 + m} \right)\) và \(B\left( {3; - 27 + m} \right)\).
Suy ra đường thẳng đi qua hai điểm \(A,{\rm{ }}B\) có phương trình \(y = - 8x + m - 3\).
Hướng dẫn giải:
- Tính \(y'\) và tìm nghiệm của \(y' = 0\), từ đó suy ra hai điểm cực trị của đồ thị hàm số.
- Viết phương trình đường thẳng đi qua hai điểm trên.
Giải thích thêm:
Các em có thể chia \(y\) cho \(y'\) được đa thức dư và suy ra phương trình đường thẳng.
Ta có \(y' = 3{x^2} - 6x - 9;{\rm{ }}y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1 \Rightarrow y = 5 + m\\x = 3 \Rightarrow y = - 27 + m\end{array} \right..\)
Suy ra tọa độ hai điểm cực trị là \(A\left( { - 1;5 + m} \right)\) và \(B\left( {3; - 27 + m} \right)\).
Suy ra đường thẳng đi qua hai điểm \(A,{\rm{ }}B\) có phương trình \(y = - 8x + m - 3\).
Hướng dẫn giải:
- Tính \(y'\) và tìm nghiệm của \(y' = 0\), từ đó suy ra hai điểm cực trị của đồ thị hàm số.
- Viết phương trình đường thẳng đi qua hai điểm trên.
Giải thích thêm:
Các em có thể chia \(y\) cho \(y'\) được đa thức dư và suy ra phương trình đường thẳng.
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị lớn nhất của hàm số $y = x - \dfrac{1}{x}$ trên $\left( { - \infty ; - 1} \right]$ là:
Khối đa diện lồi có \(8\) đỉnh và \(6\) mặt thì có số cạnh là:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?

Hai hình chóp tam giác đều có chung đáy là tam giác đều và đỉnh thuộc hai phía khác nhau so với mặt đáy. Hai hình này bằng nhau khi:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:

Với các giá trị thực của tham số \(m\), phương trình \(f\left( x \right)=m\) có nhiều nhất bao nhiêu nghiệm?
Tìm tất cả các giá trị của $m$ để hàm số $y = \dfrac{{m{x^3}}}{3} - m{x^2} + x - 1$ có cực đại và cực tiểu.
Đồ thị hàm số $y = \dfrac{{2x + b}}{{cx + d}}$ như hình vẽ bên

Chọn khẳng định đúng:
Cho điểm $I\left( {0;4} \right)$ và đường cong $\left( C \right):y = - {x^2} + 3x$. Phương trình $\left( C \right)$ đối với hệ tọa độ $\left( {IXY} \right)$ là:
Đồ thị hàm số \(y = \dfrac{{2x + b}}{{cx + d}}\) như hình vẽ bên:

Chọn kết luận đúng:
Cho lăng trụ đều \(ABC.A'B'C'\), cạnh đáy bằng a, góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \). Tính thể tích khối lăng trụ đó.
Tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{x - 1}}{{ - 3x + 2}}\) là?
Cho hàm số \(y=\frac{x-1}{2x-3}\). Gọi I là giao điểm của hai tiệm cận của đồ thị hàm số. Khoảng cách từ I đến tiếp tuyến của đồ thị hàm số đã cho đạt giá trị lớn nhất bằng
Cho hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( { - 3;7} \right)\) và xác định tại hai điểm \(x = - 3;x = 7\). Chọn kết luận đúng: