Cho hàm số $y = {x^3} - 3{x^2} + 2x - 5$ có đồ thị $\left( C \right)$. Có bao nhiêu cặp điểm thuộc đồ thị $\left( C \right)$ mà tiếp tuyến với đồ thị tại chúng là hai đường thẳng song song?
A.
Không tồn tại cặp điểm nào
B.
$1$
C.
$2$
D.
Vô số cặp điểm
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Ta có: $y' = 3{{\text{x}}^2} - 6{\text{x}} + 2$
Số cặp điểm thuộc đồ thị $\left( C \right)$ có tiếp tuyến song song nhau
$ \Leftrightarrow $ số cặp nghiệm phương trình $3{{\text{x}}^2} - 6{\text{x}} + 2 = m$ với $m \in R$ thỏa mãn phương trình $3{x^2} - 6x + 2 = m$ có hai nghiệm phân biệt.Có vô số giá trị của $m$ để phương trình trên có hai nghiệm phân biệt nên có vô số cặp điểm.
Hướng dẫn giải:
Gọi hệ số góc của hai tiếp tuyến song song là $m$, khi đó số cặp điểm thỏa mãn chính là số cặp nghiệm của phương trình $y' = m$ với $m$ bất kì.
Giải thích thêm:
Có thể sử dụng nhận xét dưới đây:
Các tiếp tuyến với đồ thị hàm số bậc ba tại hai tiếp điểm mà đối xứng với nhau qua điểm uốn thì đều song song.
Do đó có vô số cặp điểm thuộc đồ thị hàm số mà đối xứng với nhau qua điểm uốn nên sẽ có vô số cặp điểm thỏa mãn bài toán.
Ta có: $y' = 3{{\text{x}}^2} - 6{\text{x}} + 2$
Số cặp điểm thuộc đồ thị $\left( C \right)$ có tiếp tuyến song song nhau
$ \Leftrightarrow $ số cặp nghiệm phương trình $3{{\text{x}}^2} - 6{\text{x}} + 2 = m$ với $m \in R$ thỏa mãn phương trình $3{x^2} - 6x + 2 = m$ có hai nghiệm phân biệt.Có vô số giá trị của $m$ để phương trình trên có hai nghiệm phân biệt nên có vô số cặp điểm.
Hướng dẫn giải:
Gọi hệ số góc của hai tiếp tuyến song song là $m$, khi đó số cặp điểm thỏa mãn chính là số cặp nghiệm của phương trình $y' = m$ với $m$ bất kì.
Giải thích thêm:
Có thể sử dụng nhận xét dưới đây:
Các tiếp tuyến với đồ thị hàm số bậc ba tại hai tiếp điểm mà đối xứng với nhau qua điểm uốn thì đều song song.
Do đó có vô số cặp điểm thuộc đồ thị hàm số mà đối xứng với nhau qua điểm uốn nên sẽ có vô số cặp điểm thỏa mãn bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ $Oxyz,$ cho điểm $M\left( {1;1;2} \right).$ Hỏi có bao nhiêu mặt phẳng $\left( P \right)$ đi qua $M$ và cắt các trục $x'Ox,\,\,y'Oy,\,\,z'Oz$ lần lượt tại các điểm $A,\,\,B,\,\,C$ sao cho $OA = OB = OC \ne 0\,\,?$
Họ nguyên hàm của hàm số \(f\left( x \right)={{x}^{3}}+2x\) là:
Hình chiếu của điểm \(M\left( {2;2; - 1} \right)\) lên mặt phẳng \(\left( {Oyz} \right)\) là:
Trong không gian Oxyz, cho ba mặt phẳng \(\left( P \right):\,\,x+y-3z+1=0;\,\,\left( Q \right):\,\,2x+3y+z-1=0\); \(\left( R \right):\,\,x+2y+4z-2=0\). Xét mặt phẳng (T) chứa giao tuyến của hai mặt phẳng (P) và (Q), có $\overrightarrow {{n_{\left( T \right)}}} = \left( {1;a;b} \right)$ và tạo với mặt phẳng (R) một góc \(\alpha \). Biết \(\cos \alpha =\dfrac{23}{\sqrt{679}}\) có phương trình:
Nếu đặt $\left\{ \begin{array}{l}u = \ln \left( {x + 2} \right)\\{\rm{d}}v = x\,{\rm{d}}x\end{array} \right.$ thì tích phân $I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} $ trở thành
Trong không gian Oxyz, cho điểm A(1;2;3). Hình chiếu vuông góc của điểm A trên mặt phẳng (Oxy) là điểm
Cho véc tơ \(\overrightarrow u = \left( {x;y;z} \right)\) và một số thực \(k \ne 0\). Tọa độ véc tơ \(\dfrac{1}{k}.\overrightarrow u \) là:
Tìm nguyên hàm của hàm số \(f\left( x \right)=\sin 2x.\)
Cho hai điểm \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\), khi đó độ dài đoạn thẳng \(AB\) được tính theo công thức:
Gọi \(S\) là diện tích hình phẳng \(\left( H \right)\) giới hạn bởi các đường $y=f\left( x \right),~$trục hoành và hai đường thẳng \(x = - 1,x = 2\) (như hình vẽ). Đặt $a=\underset{-1}{\overset{0}{\mathop \int }}\,f\left( x \right)dx,~b=\underset{0}{\overset{2}{\mathop \int }}\,f\left( x \right)dx.$ Mệnh đề nào sau đây đúng?

Tìm nguyên hàm của hàm số \(f(x) = \dfrac{{{x^3}}}{{\sqrt {4 - {x^2}} }}\).
Cho hàm số $f\left( x \right)$ thỏa mãn $f'\left( x \right){\left[ {f\left( x \right)} \right]^{2018}} = x.{e^x}{\mkern 1mu} {\mkern 1mu} \forall x \in R$ và $f\left( 1 \right) = 1$. Hỏi phương trình $f\left( x \right) = - \dfrac{1}{e}$ có bao nhiêu nghiệm?
Một viên gạch hoa hình vuông cạnh \(40\)cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm của viên gạch để tạo ra bốn cánh hoa (được tô màu sẫm như hình vẽ bên). Diện tích mỗi cánh hoa của viên gạch bằng

Trong không gian với hệ tọa độ $Oxyz$, cho mặt phẳng $\left( P \right):ax + by + cz - 27 = 0$ qua hai điểm $A\left( {3,2,1} \right),B\left( { - 3,5,2} \right)$ và vuông góc với mặt phẳng $\left( Q \right):3x + y + z + 4 = 0$ . Tính tổng $S = a + b + c$.