Cho hàm số \(y = {\log _{\frac{\pi }{4}}}x\). Khẳng định nào sau đây sai?
A.
Hàm số đã cho nghịch biến trên tập xác định
B.
Đồ thị hàm số đã cho có một tiệm cận đứng là trục $Oy$
C.
Hàm số đã cho có tập xác định \(D = \left( {0; + \infty } \right)\)
D.
Đồ thị hàm số đã cho luôn nằm phía trên trục hoành.
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
- Hàm số \(y = {\log _{\frac{\pi }{4}}}x\) có tập xác định \(D = \left( {0; + \infty } \right)\).
- Vì \(0 < \dfrac{\pi }{4} < 1\) nên hàm số nghịch biến trên TXĐ
- Tiệm cận đứng của đồ thị hàm số là trục $Oy$
- Đồ thị hàm số nằm hoàn toàn bên phải trục hoành (vì \(x > 0\))
Hướng dẫn giải:
Sử dụng tính chất của hàm số logarit như:
- Hàm số \(y = {\log _a}x\left( {0 < a \ne 1} \right)\) xác định trên \(\left( {0; + \infty } \right)\).
- Khi \(0 < a < 1\) thì hàm số nghịch biến trên TXĐ.
- Tiệm cận đứng của đồ thị hàm số là trục $Oy$.
Giải thích thêm:
Nhiều HS sẽ chọn nhầm đáp án A vì nghĩ \(\dfrac{\pi }{4} > 1\) là sai.
- Hàm số \(y = {\log _{\frac{\pi }{4}}}x\) có tập xác định \(D = \left( {0; + \infty } \right)\).
- Vì \(0 < \dfrac{\pi }{4} < 1\) nên hàm số nghịch biến trên TXĐ
- Tiệm cận đứng của đồ thị hàm số là trục $Oy$
- Đồ thị hàm số nằm hoàn toàn bên phải trục hoành (vì \(x > 0\))
Hướng dẫn giải:
Sử dụng tính chất của hàm số logarit như:
- Hàm số \(y = {\log _a}x\left( {0 < a \ne 1} \right)\) xác định trên \(\left( {0; + \infty } \right)\).
- Khi \(0 < a < 1\) thì hàm số nghịch biến trên TXĐ.
- Tiệm cận đứng của đồ thị hàm số là trục $Oy$.
Giải thích thêm:
Nhiều HS sẽ chọn nhầm đáp án A vì nghĩ \(\dfrac{\pi }{4} > 1\) là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ $Oxyz,$ cho điểm $M\left( {1;1;2} \right).$ Hỏi có bao nhiêu mặt phẳng $\left( P \right)$ đi qua $M$ và cắt các trục $x'Ox,\,\,y'Oy,\,\,z'Oz$ lần lượt tại các điểm $A,\,\,B,\,\,C$ sao cho $OA = OB = OC \ne 0\,\,?$
Họ nguyên hàm của hàm số \(f\left( x \right)={{x}^{3}}+2x\) là:
Hình chiếu của điểm \(M\left( {2;2; - 1} \right)\) lên mặt phẳng \(\left( {Oyz} \right)\) là:
Trong không gian Oxyz, cho ba mặt phẳng \(\left( P \right):\,\,x+y-3z+1=0;\,\,\left( Q \right):\,\,2x+3y+z-1=0\); \(\left( R \right):\,\,x+2y+4z-2=0\). Xét mặt phẳng (T) chứa giao tuyến của hai mặt phẳng (P) và (Q), có $\overrightarrow {{n_{\left( T \right)}}} = \left( {1;a;b} \right)$ và tạo với mặt phẳng (R) một góc \(\alpha \). Biết \(\cos \alpha =\dfrac{23}{\sqrt{679}}\) có phương trình:
Trong không gian Oxyz, cho điểm A(1;2;3). Hình chiếu vuông góc của điểm A trên mặt phẳng (Oxy) là điểm
Nếu đặt $\left\{ \begin{array}{l}u = \ln \left( {x + 2} \right)\\{\rm{d}}v = x\,{\rm{d}}x\end{array} \right.$ thì tích phân $I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} $ trở thành
Trong không gian với hệ tọa độ \(Oxyz\), cho sáu điểm \(A\left( {1;2;3} \right)\), \(B\left( {2; - 1;1} \right)\), \(C\left( {3;3; - 3} \right)\), \(A',\,\,B',\,\,C'\) thỏa mãn \(\overrightarrow {A'A} + \overrightarrow {B'B} + \overrightarrow {C'C} = \overrightarrow 0 \). Nếu \(G'\) là trọng tâm tam giác \(A'B'C'\) thì \(G'\) có tọa độ là:
Cho hai điểm \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\), khi đó độ dài đoạn thẳng \(AB\) được tính theo công thức:
Tìm nguyên hàm của hàm số \(f\left( x \right)=\sin 2x.\)
Trong không gian với hệ tọa độ Oxyz , tìm tất cả các giá trị của m để phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}+4x-2y+2z+m=0\) là phương trình mặt cầu.
Cho hàm số $f\left( x \right)$ thỏa mãn $f'\left( x \right){\left[ {f\left( x \right)} \right]^{2018}} = x.{e^x}{\mkern 1mu} {\mkern 1mu} \forall x \in R$ và $f\left( 1 \right) = 1$. Hỏi phương trình $f\left( x \right) = - \dfrac{1}{e}$ có bao nhiêu nghiệm?
Trong không gian với hệ tọa độ $Oxyz$, cho mặt phẳng $\left( P \right):ax + by + cz - 27 = 0$ qua hai điểm $A\left( {3,2,1} \right),B\left( { - 3,5,2} \right)$ và vuông góc với mặt phẳng $\left( Q \right):3x + y + z + 4 = 0$ . Tính tổng $S = a + b + c$.
Cho véc tơ \(\overrightarrow u = \left( {x;y;z} \right)\) và một số thực \(k \ne 0\). Tọa độ véc tơ \(\dfrac{1}{k}.\overrightarrow u \) là:
Gọi \(S\) là diện tích hình phẳng \(\left( H \right)\) giới hạn bởi các đường $y=f\left( x \right),~$trục hoành và hai đường thẳng \(x = - 1,x = 2\) (như hình vẽ). Đặt $a=\underset{-1}{\overset{0}{\mathop \int }}\,f\left( x \right)dx,~b=\underset{0}{\overset{2}{\mathop \int }}\,f\left( x \right)dx.$ Mệnh đề nào sau đây đúng?
