Cho hàm số \(y = f\left( x \right)\) có $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0$ và $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = + \infty $. Mệnh đề nào sau đây là đúng?
A.
Đồ thị hàm số \(y = f\left( x \right)\) không có tiệm cận ngang.
B.
Đồ thị hàm số \(y = f\left( x \right)\) có một tiệm cận đứng là đường thẳng $y = 0$.
C.
Đồ thị hàm số \(y = f\left( x \right)\) có một tiệm cận ngang là trục hoành.
D.
Đồ thị hàm số \(y = f\left( x \right)\) nằm phía trên trục hoành.
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Vì $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0$ và $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = + \infty $ nên đồ thị hàm số chỉ một tiệm cận ngang là trục hoành.
Hướng dẫn giải:
Sử dụng định nghĩa tiệm cận ngang:
Đường thẳng \(y = {y_0}\) được gọi là TCN của đồ thị hàm số nếu \(\mathop {\lim }\limits_{x \to + \infty } y = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } y = {y_0}\)
Giải thích thêm:
Đáp án D sai vì chưa chắc đồ thị hàm số nằm hoàn toàn phía trên trục hoành, có thể xảy ra trường hợp dưới đây:
Vì $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0$ và $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = + \infty $ nên đồ thị hàm số chỉ một tiệm cận ngang là trục hoành.
Hướng dẫn giải:
Sử dụng định nghĩa tiệm cận ngang:
Đường thẳng \(y = {y_0}\) được gọi là TCN của đồ thị hàm số nếu \(\mathop {\lim }\limits_{x \to + \infty } y = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } y = {y_0}\)
Giải thích thêm:
Đáp án D sai vì chưa chắc đồ thị hàm số nằm hoàn toàn phía trên trục hoành, có thể xảy ra trường hợp dưới đây:
CÂU HỎI CÙNG CHỦ ĐỀ
Khối đa diện lồi có \(8\) đỉnh và \(6\) mặt thì có số cạnh là:
Giá trị lớn nhất của hàm số $y = x - \dfrac{1}{x}$ trên $\left( { - \infty ; - 1} \right]$ là:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?

Hai hình chóp tam giác đều có chung đáy là tam giác đều và đỉnh thuộc hai phía khác nhau so với mặt đáy. Hai hình này bằng nhau khi:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:

Với các giá trị thực của tham số \(m\), phương trình \(f\left( x \right)=m\) có nhiều nhất bao nhiêu nghiệm?
Tìm tất cả các giá trị của $m$ để hàm số $y = \dfrac{{m{x^3}}}{3} - m{x^2} + x - 1$ có cực đại và cực tiểu.
Đồ thị hàm số $y = \dfrac{{2x + b}}{{cx + d}}$ như hình vẽ bên

Chọn khẳng định đúng:
Cho điểm $I\left( {0;4} \right)$ và đường cong $\left( C \right):y = - {x^2} + 3x$. Phương trình $\left( C \right)$ đối với hệ tọa độ $\left( {IXY} \right)$ là:
Đồ thị hàm số \(y = \dfrac{{2x + b}}{{cx + d}}\) như hình vẽ bên:

Chọn kết luận đúng:
Cho lăng trụ đều \(ABC.A'B'C'\), cạnh đáy bằng a, góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \). Tính thể tích khối lăng trụ đó.
Tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{x - 1}}{{ - 3x + 2}}\) là?
Cho hàm số \(y=\frac{x-1}{2x-3}\). Gọi I là giao điểm của hai tiệm cận của đồ thị hàm số. Khoảng cách từ I đến tiếp tuyến của đồ thị hàm số đã cho đạt giá trị lớn nhất bằng
Vật thể nào trong các vật thể sau không phải là khối đa diện?