Cho hàm số $y = f\left( x \right)$ có bảng biến thiên:

Khẳng định nào sau đây là đúng?
A.
Đồ thị hàm số có tiệm cận đứng là $x = \dfrac{{ - 1}}{2}$
B.
Đồ thị hàm số có tiệm cận đứng là $x = \dfrac{1}{2}$
C.
Hàm số luôn đồng biến trên $R$
D.
Đồ thị hàm số có tiệm cận ngang là $y = \dfrac{1}{2}$
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
$x = \dfrac{1}{2}$ là tiệm cận đứng của đồ thị hàm số
$y = - \dfrac{1}{2}$ là tiệm cận ngang của đồ thị hàm số
Hàm số nghịch biến trên $\left( { - \infty ;\,\dfrac{1}{2}} \right)$ và $\left( {\dfrac{1}{2};\, + \infty } \right)$
Hướng dẫn giải:
Quan sát bảng biến thiên, tìm các tiệm cận đứng, tiệm cận ngang của đồ thị hàm số và tìm các khoảng đồng biến, nghịch biến của hàm số.
Giải thích thêm:
HS thường nhầm lẫn khi tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số.
$x = \dfrac{1}{2}$ là tiệm cận đứng của đồ thị hàm số
$y = - \dfrac{1}{2}$ là tiệm cận ngang của đồ thị hàm số
Hàm số nghịch biến trên $\left( { - \infty ;\,\dfrac{1}{2}} \right)$ và $\left( {\dfrac{1}{2};\, + \infty } \right)$
Hướng dẫn giải:
Quan sát bảng biến thiên, tìm các tiệm cận đứng, tiệm cận ngang của đồ thị hàm số và tìm các khoảng đồng biến, nghịch biến của hàm số.
Giải thích thêm:
HS thường nhầm lẫn khi tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp $S.ABC$ có $SA \bot (ABC);AC = b,AB = c,\widehat {BAC} = \alpha $. Gọi $B',C'$ lần lượt là hình chiếu vuông góc của $A$ lên $SB,SC$. Tính bán kính mặt cầu ngoại tiếp khối chóp $A.{\rm{ }}BCC'B'$ theo $b,c,\alpha $
Cho $a, b$ là các số thực, thỏa mãn \(0 < a < 1 < b\), khẳng định nào sau đây là đúng?
Cho hàm số $y = f(x)$ liên tục và có đạo hàm cấp hai trên $R$. Đồ thị của các hàm số $y = f(x),y = f'(x),y = f''(x)$ lần lượt là các đường cong nào trong hình vẽ bên.
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng
Cho các số thực dương $ a, b, x, y $ với \(a \ne 1\), \(b \ne 1\). Khẳng định nào sau đây là khẳng định sai?
Tìm $m$ để phương trình ${x^5} + {x^3} - \sqrt {1 - x} + m = 0$ có nghiệm trên $\left( { - \infty ;1} \right]$.
Cho một mặt cầu bán kính bằng $1$. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu?
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh bằng \(2a.\) Tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với mặt đáy. Biết thể tích khối chóp \(S.ABCD\) bằng \(\dfrac{{4{a^3}}}{3}\) . Gọi \(\alpha \) là góc giữa \(SC\) và mặt đáy, tính \(\tan \alpha .\)
Cho hàm số $y = f(x) = {x^3} + 6{x^2} + 9x + 3{\text{ }}\left( C \right)$.Tồn tại hai tiếp tuyến của $(C)$ phân biệt và có cùng hệ số góc $k$, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục $Ox, Oy$ tương ứng tại $A$ và $B$ sao cho $OA = 2017.OB.$ Hỏi có bao nhiêu giá trị của $k$ thỏa mãn yêu cầu bài toán?
Cho hàm số \(y = {x^\alpha }\) có đồ thị như hình dưới. Điều kiện của \(\alpha \) là:
Cho hình chóp \(S.\,ABC\) có \(AB = AC = 4,\,BC = 2,\,SA = 4\sqrt 3 \), \(\widehat {SAB} = \widehat {SAC} = 30^0\). Tính thể tích khối chóp \(S.\,ABC.\)
Công thức nào sau đây là công thức tăng trưởng mũ?
Gọi $m\;$ là giá trị để hàm số $y = \dfrac{{x - {m^2}}}{{x + 8}}$ có giá trị nhỏ nhất trên $\left[ {0;3} \right]$ bằng $ - 2.$ Mệnh đề nào sau đây là đúng?
Số đường tiệm cận của đồ thị hàm số $y = \dfrac{{x - 1}}{{2 - x}}$ là: