Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c\) xác định và liên tục trên \(D = \mathbb{R}\).
Ta có \(f\left( 0 \right) = c > 2017 > 0\).
\(f\left( { - 1} \right) = f\left( 1 \right) = a + b + c < 2017\)
Do đó \(\left[ {f\left( { - 1} \right) - 2017} \right].\left[ {f\left( 0 \right) - 2017} \right] < 0\) và \(\left[ {f\left( 1 \right) - 2017} \right].\left[ {f\left( 0 \right) - 2017} \right] < 0\)
Mặt khác \(\mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) = + \infty \) nên \(\exists \alpha < 0\), \(\beta > 0\) sao cho \(f\left( \alpha \right) > 2017\), \(f\left( \beta \right) > 2017\)
\(\left[ {f\left( \alpha \right) - 2017} \right].\left[ {f\left( { - 1} \right) - 2017} \right] < 0\) và \(\left[ {f\left( \beta \right) - 2017} \right].\left[ {f\left( 1 \right) - 2017} \right] < 0\)
Suy ra đồ thị hàm số \(y = f\left( x \right) - 2017\) cắt trục hoành tại bốn điểm phân biệt
Đồ thị hàm số \(y = \left| {f\left( x \right) - 2017} \right|\) có dạng

Vậy số điểm cực trị của hàm số \(y = \left| {f\left( x \right) - 2017} \right|\) là \(7\) .
Hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c\) xác định và liên tục trên \(D = \mathbb{R}\).
Ta có \(f\left( 0 \right) = c > 2017 > 0\).
\(f\left( { - 1} \right) = f\left( 1 \right) = a + b + c < 2017\)
Do đó \(\left[ {f\left( { - 1} \right) - 2017} \right].\left[ {f\left( 0 \right) - 2017} \right] < 0\) và \(\left[ {f\left( 1 \right) - 2017} \right].\left[ {f\left( 0 \right) - 2017} \right] < 0\)
Mặt khác \(\mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) = + \infty \) nên \(\exists \alpha < 0\), \(\beta > 0\) sao cho \(f\left( \alpha \right) > 2017\), \(f\left( \beta \right) > 2017\)
\(\left[ {f\left( \alpha \right) - 2017} \right].\left[ {f\left( { - 1} \right) - 2017} \right] < 0\) và \(\left[ {f\left( \beta \right) - 2017} \right].\left[ {f\left( 1 \right) - 2017} \right] < 0\)
Suy ra đồ thị hàm số \(y = f\left( x \right) - 2017\) cắt trục hoành tại bốn điểm phân biệt
Đồ thị hàm số \(y = \left| {f\left( x \right) - 2017} \right|\) có dạng

Vậy số điểm cực trị của hàm số \(y = \left| {f\left( x \right) - 2017} \right|\) là \(7\) .
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị lớn nhất của hàm số $y = x - \dfrac{1}{x}$ trên $\left( { - \infty ; - 1} \right]$ là:
Hai hình chóp tam giác đều có chung đáy là tam giác đều và đỉnh thuộc hai phía khác nhau so với mặt đáy. Hai hình này bằng nhau khi:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?

Khối đa diện lồi có \(8\) đỉnh và \(6\) mặt thì có số cạnh là:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:

Với các giá trị thực của tham số \(m\), phương trình \(f\left( x \right)=m\) có nhiều nhất bao nhiêu nghiệm?
Tìm tất cả các giá trị của $m$ để hàm số $y = \dfrac{{m{x^3}}}{3} - m{x^2} + x - 1$ có cực đại và cực tiểu.
Cho điểm $I\left( {0;4} \right)$ và đường cong $\left( C \right):y = - {x^2} + 3x$. Phương trình $\left( C \right)$ đối với hệ tọa độ $\left( {IXY} \right)$ là:
Đồ thị hàm số $y = \dfrac{{2x + b}}{{cx + d}}$ như hình vẽ bên

Chọn khẳng định đúng:
Cho lăng trụ đều \(ABC.A'B'C'\), cạnh đáy bằng a, góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \). Tính thể tích khối lăng trụ đó.
Đồ thị hàm số \(y = \dfrac{{2x + b}}{{cx + d}}\) như hình vẽ bên:

Chọn kết luận đúng:
Tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{x - 1}}{{ - 3x + 2}}\) là?
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Trong các hàm số dưới đây, hàm số nào không đồng biến trên $R?$