Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Đặt : \(\left\{ \begin{array}{l}u = x\\dv = \cos 2xdx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = dx\\v = \dfrac{1}{2}.\sin 2x\end{array} \right.\)
Suy ra: $\int\limits_0^{\dfrac{\pi }{4}} {x.\cos xdx} = \left. {\left( {x.\dfrac{1}{2}.{\mathop{\rm s}\nolimits} {\rm{in2x}}} \right)} \right|_0^{\dfrac{\pi }{4}} - \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{4}} {\sin 2xdx} $
$= \dfrac{\pi }{8} + \left. {\dfrac{1}{4}\cos 2x} \right|_0^{\dfrac{\pi }{4}} = - \dfrac{1}{4} + \dfrac{\pi }{8}$
\( \Rightarrow a = - \dfrac{1}{4};b = \dfrac{1}{8} \Rightarrow S = a + 2b = 0\)
Hướng dẫn giải:
Sử dụng phương pháp tích phân từng phần.
- Bước 1: Đặt \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \sin \left( {ax + b} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = - \dfrac{1}{a}\cos \left( {ax + b} \right)\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \cos \left( {ax + b} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = \dfrac{1}{a}\sin \left( {ax + b} \right)\end{array} \right.\)
- Bước 2: Tính tích phân theo công thức \(\int\limits_m^n {f\left( x \right)\sin \left( {ax + b} \right)dx} = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \) hoặc \(\int\limits_m^n {f\left( x \right)\cos \left( {ax + b} \right)dx} = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \)
Đặt : \(\left\{ \begin{array}{l}u = x\\dv = \cos 2xdx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = dx\\v = \dfrac{1}{2}.\sin 2x\end{array} \right.\)
Suy ra: $\int\limits_0^{\dfrac{\pi }{4}} {x.\cos xdx} = \left. {\left( {x.\dfrac{1}{2}.{\mathop{\rm s}\nolimits} {\rm{in2x}}} \right)} \right|_0^{\dfrac{\pi }{4}} - \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{4}} {\sin 2xdx} $
$= \dfrac{\pi }{8} + \left. {\dfrac{1}{4}\cos 2x} \right|_0^{\dfrac{\pi }{4}} = - \dfrac{1}{4} + \dfrac{\pi }{8}$
\( \Rightarrow a = - \dfrac{1}{4};b = \dfrac{1}{8} \Rightarrow S = a + 2b = 0\)
Hướng dẫn giải:
Sử dụng phương pháp tích phân từng phần.
- Bước 1: Đặt \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \sin \left( {ax + b} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = - \dfrac{1}{a}\cos \left( {ax + b} \right)\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \cos \left( {ax + b} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = \dfrac{1}{a}\sin \left( {ax + b} \right)\end{array} \right.\)
- Bước 2: Tính tích phân theo công thức \(\int\limits_m^n {f\left( x \right)\sin \left( {ax + b} \right)dx} = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \) hoặc \(\int\limits_m^n {f\left( x \right)\cos \left( {ax + b} \right)dx} = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm \(A(0;2; - 1)\) , \(B(2;0;1)\). Tìm tọa độ điểm $M$ nằm trên trục $Ox$ sao cho :\(M{A^2} + M{B^2}\) đạt giá trị bé nhất.
Trong không gian tọa độ \(Oxyz\), tính thể tích khối tứ diện \(OBCD\) biết \(B\left( {2;0;0} \right),C\left( {0;1;0} \right),D\left( {0;0; - 3} \right)\).
Công thức tính độ dài véc tơ \(\overrightarrow u = \left( {a;b;c} \right)\) là:
Để tính $I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\,\cos x\,{\rm{d}}x} $ theo phương pháp tích phân từng phần, ta đặt
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - 4y + 4{\rm{z}} - 16 = 0$ và đường thẳng $d:\dfrac{{x - 1}}{1} = \dfrac{{y + 3}}{2} = \dfrac{z}{2}$. Mặt phẳng nào trong các mặt phẳng sau chứa $d$ và tiếp xúc với mặt cầu $(S)$.
Cho hai hàm số \(y = {f_1}\left( x \right)\) và \(y = {f_2}\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và có đồ thị như hình vẽ bên. Gọi $S$ là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng \(x = a,x = b\). Thể tích $V$ của vật thể tròn xoay tạo thành khi quay $S$ quanh trục $Ox$ được tính bởi công thức nào sau đây ?

Hàm số \(F\left( x \right) = {x^5} + 5{x^3} - x + 2\) là một nguyên hàm của hàm số nào sau đây? (C là hằng số).
Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm \(M\left( {2;1;1} \right)\), cắt và vuông góc với đường thẳng \(\Delta :\dfrac{{x - 2}}{{ - 2}} = \dfrac{{y - 8}}{1} = \dfrac{z}{1}\). Tìm tọa độ giao điểm của d và mặt phẳng \(\left( {Oyz} \right)\).
Trên mặt phẳng tọa độ \(Oxy\), tìm tập hợp các điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(\left| {z - 2} \right| + \left| {z + 2} \right| = 10\).
Gọi \(A\) là điểm biểu diễn của số phức \(z = 3 + 2i\) và \(B\) là điểm biểu diễn của số phức \(z' = 2 + 3i\). Mệnh đề nào sau đây là đúng?
Cho $I = \int\limits_0^1 {\left( {2x - {m^2}} \right)dx} $. Có bao nhiêu giá trị nguyên dương m để $I + 3 \ge 0$?
Tính tích phân \(I=\int\limits_{0}^{3}{\frac{\text{d}x}{x+2}}\).
Cho hàm số \(y = f\left( x \right)\) liên tục và nhận giá trị dương trên \(\mathbb{R}.\) Gọi \({D_1}\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),\) các đường \(x = 0,\,\,x = 1\) và trục \(Ox.\) Gọi \({D_2}\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \dfrac{1}{3}f\left( x \right),\) các đường \(x = 0,\,\,\,x = 1\) và trục \(Ox.\) Quay các hình phẳng \({D_1},\,\,{D_2}\) quanh trục \(Ox\) ta được các khối tròn xoay có thể tích lần lượt là \({V_1},\,\,{V_2}.\)
Khẳng định nào sau đâu là đúng?
Trong không gian Oxyz, phương trình mặt phẳng đi qua ba điểm \(A\left( { - 3;0;0} \right);\,\,B\left( {0; - 2;0} \right);\) \(C\left( {0;0;1} \right)\) được viết dưới dạng \(ax + by - 6z + c = 0\). Giá trị của \(T = a + b - c\) là :
Trong không gian \(Oxyz,\) cho mặt cầu \((S):{(x - 1)^2} + {(y - 2)^2} + {(z + 1)^2} = 6,\) tiếp xúc với hai mặt phẳng \((P):x + y + 2z\, + \,5 = 0,\,\,(Q):2x - y + z\, - \,5 = 0\) lần lượt tại các tiếp điểm $A,\,\,B.$ Độ dài đoạn thẳng $AB$ là