Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Hình đa diện lồi cũng là hình đa diện nên mỗi cạnh của nó là cạnh chung của đúng \(2\) mặt.
Giải thích thêm:
Một số em sẽ chọn đáp án D vì nhớ nhầm định nghĩa hình đa diện.
Hình đa diện lồi cũng là hình đa diện nên mỗi cạnh của nó là cạnh chung của đúng \(2\) mặt.
Giải thích thêm:
Một số em sẽ chọn đáp án D vì nhớ nhầm định nghĩa hình đa diện.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác cân tại $A$. \(AB = AC = 2a,\widehat {CAB} = {120^0}.\) Mặt phẳng \(\left( {AB'C'} \right)\) tạo với đáy một góc \({60^0}\). Thể tích khối lăng trụ là:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) vuông tại \(A\) và \(SB\) vuông góc với đáy. Biết \(SB = a,SC\) hợp với \(\left( {SAB} \right)\) một góc \({30^0}\) và \(\left( {SAC} \right)\) hợp với đáy \(\left( {ABC} \right)\) một góc \({60^0}\). Thể tích khối chóp là:
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?
Cho tứ diện \(ABCD\) có \(AB,\,\,AC,\,\,AD\) đôi một vuông góc và \(AB = 2a,\,\,\,AC = 3a,\,\,AD = 4a.\) Thể tích của khối tứ diện đó là:
Cho đa diện \(ABCDEF\) có \(AD,BE,CF\) đôi một song song. \(AD \bot \left( {ABC} \right)\), \(AD + BE + CF = 5\), diện tích tam giác \(ABC\) bằng \(10\). Thể tích đa diện \(ABCDEF\) bằng
Cho hình chóp đều $S.ABCD$ có diện tích đáy là \(16c{m^2}\), diện tích một mặt bên là \(8\sqrt 3 c{m^2}\). Thể tích khối chóp $S.ABCD$ là:
Khối đa diện lồi có \(8\) đỉnh và \(6\) mặt thì có số cạnh là:
Đáy của hình chóp $S.ABCD$ là một hình vuông cạnh \(a\). Cạnh bên \(SA\) vuông góc với mặt đáy và có độ dài là \(a\). Thể tích khối tứ diện \(S.BCD\) bằng:
Có bao nhiêu cách chọn ra ba đỉnh từ các đỉnh của một hình lập phương để thu được một tam giác đều ?
