Trong không gian với hệ tọa độ Oxyz, viết phươn trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {1;2;3} \right)\) và cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho \(T = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\) đạt giá trị nhỏ nhất.
A.
\(\left( P \right):\,\,6x - 3y + 2z - 6 = 0\)
B.
\(\left( P \right):\,\,6x + 3y + 2z - 18 = 0\)
C.
\(\left( P \right):\,\,x + 2y + 3z - 14 = 0\)
D.
\(\left( P \right):\,\,3x + 2y + z - 10 = 0\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Gọi \(A\left( {a;0;0} \right);\,\,B\left( {0;b;0} \right);\,\,C\left( {0;0;c} \right)\), khi đó phương trình mặt phẳng \(\left( P \right)\) là: \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\)
\(M\left( {1;2;3} \right) \in \left( P \right) \Rightarrow \frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1\)
Áp dụng BĐT Bunhiacopxki ta có:
\(\begin{array}{l}1 = {\left( {\frac{1}{a} + \frac{2}{b} + \frac{3}{c}} \right)^2} \le \left( {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} \right)\left( {{1^2} + {2^2} + {3^2}} \right)\\ \Leftrightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} \ge \frac{1}{{14}}\\ \Leftrightarrow \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} \ge \frac{1}{{14}} \Rightarrow {T_{\min }} = \frac{1}{{14}}\end{array}\)
Dấu = xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{a} = \frac{1}{{2b}} = \frac{1}{{3c}}\\\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \frac{a}{2}\\c = \frac{a}{3}\\\frac{1}{a} + \frac{4}{a} + \frac{9}{a} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 14\\b = 7\\c = \frac{{14}}{3}\end{array} \right. \Rightarrow \left( P \right):\,\,\frac{x}{{14}} + \frac{y}{7} + \frac{{3z}}{{14}} = 1 \Leftrightarrow x + 2y + 3z - 14 = 0\)
Hướng dẫn giải:
+) Viết phương trình mặt phẳng (ABC) ở dạng đoạn chắn.
+) Sử dụng BĐT Bunhiacopxki.
+) Tìm điều kiện để dấu đẳng thức xảy ra.
Gọi \(A\left( {a;0;0} \right);\,\,B\left( {0;b;0} \right);\,\,C\left( {0;0;c} \right)\), khi đó phương trình mặt phẳng \(\left( P \right)\) là: \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\)
\(M\left( {1;2;3} \right) \in \left( P \right) \Rightarrow \frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1\)
Áp dụng BĐT Bunhiacopxki ta có:
\(\begin{array}{l}1 = {\left( {\frac{1}{a} + \frac{2}{b} + \frac{3}{c}} \right)^2} \le \left( {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} \right)\left( {{1^2} + {2^2} + {3^2}} \right)\\ \Leftrightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} \ge \frac{1}{{14}}\\ \Leftrightarrow \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} \ge \frac{1}{{14}} \Rightarrow {T_{\min }} = \frac{1}{{14}}\end{array}\)
Dấu = xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{a} = \frac{1}{{2b}} = \frac{1}{{3c}}\\\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \frac{a}{2}\\c = \frac{a}{3}\\\frac{1}{a} + \frac{4}{a} + \frac{9}{a} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 14\\b = 7\\c = \frac{{14}}{3}\end{array} \right. \Rightarrow \left( P \right):\,\,\frac{x}{{14}} + \frac{y}{7} + \frac{{3z}}{{14}} = 1 \Leftrightarrow x + 2y + 3z - 14 = 0\)
Hướng dẫn giải:
+) Viết phương trình mặt phẳng (ABC) ở dạng đoạn chắn.
+) Sử dụng BĐT Bunhiacopxki.
+) Tìm điều kiện để dấu đẳng thức xảy ra.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ trục tọa độ $Oxyz$, cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?
Trong không gian với hệ tọa độ $Oxyz$, phương trình nào dưới đây là phương trình chính tắc của đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3t\\z = - 2 + t\end{array} \right.\)
Hai véc tơ không cùng phương \(\overrightarrow a ,\overrightarrow b \) được gọi là cặp véc tơ chỉ phương (VTCP) của \(\left( P \right)\) nếu giá của chúng:
Trong không gian với hệ tọa độ \(Oxyz\), cho các điểm \(A\left( {0;0;2} \right)\), \(B\left( {1;0;0} \right)\), \(C\left( {2;2;0} \right)\) và \(D\left( {0;m;0} \right)\). Điều kiện cần và đủ của \(m\) để khoảng cách giữa hai đường thẳng \(AB\) và \(CD\) bằng \(2\) là:
Trong không gian $Oxyz$, cho hình bình hành $ABCD$ với $A\left( {0,1,1} \right),{\rm{ }}B\left( { - 2,3,1} \right)$ và $C\left( {4, - 3,1} \right)$. Phương trình nào không phải là phương trình tham số của đường chéo $BD$.
Trong không gian Oxyz, cho \(M\left( -1;3;4 \right)\), mặt phẳng (P) đi qua M cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho M là trực tâm \(\Delta ABC\). Thể tích khối tứ diện OABC bằng
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):x + 2y = 0\). Phương trình nào sau đây là phương trình đường thẳng qua \(A\left( { - 1;3; - 4} \right)\) cắt trục \(Ox\) và song song với mặt phẳng \(\left( P \right)\):
Trong không gian với hệ tọa độ $Oxyz$, cho hai đường thẳng \(d:\left\{ \begin{array}{l}x = 2t\\y = t\\z = 4\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = t'\\y = 3 - t'\\z = 0\end{array} \right.\) . Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng $d$ và $d'$ là:
Trong không gian với hệ tọa độ \(Oxyz\) cho mặt phẳng \(\left( P \right):x - 2y + 2z - 3 = 0\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + 5 = 0\). Giả sử \(M \in \left( P \right)\) và \(N \in \left( S \right)\) sao cho \(\overrightarrow {MN} \) cùng phương với vectơ \(\overrightarrow u = \left( {1;0;1} \right)\) và khoảng cách \(MN\) lớn nhất. Tính \(MN\)
Trong không gian với hệ tọa độ $Oxyz$, cho đường thẳng \(d:\dfrac{x}{1} = \dfrac{{y - 1}}{2} = \dfrac{{z + 1}}{{ - 1}}\) và điểm $A\left( {5,4, - 2} \right)$. Phương trình mặt cầu đi qua điểm $A$ và có tâm là giao điểm của $d$ với mặt phẳng $(Oxy)$ là
Cho hai điểm \(A\left( {1; - 2;0} \right),B\left( {0;1;1} \right)\), độ dài đường cao \(OH\) của tam giác \(OAB\) là:
Trong không gian với hệ trục tọa độ $Oxyz$, cho ba điểm $A\left( {1;2; - 1} \right),B\left( {2; - 1;3} \right),C\left( { - 3;5;1} \right)$. Tìm tọa độ điểm $D$ sao cho tứ giác $ABCD$ là hình bình hành.
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - 4y + 4{\rm{z}} - 16 = 0$ và đường thẳng $d:\dfrac{{x - 1}}{1} = \dfrac{{y + 3}}{2} = \dfrac{z}{2}$. Mặt phẳng nào trong các mặt phẳng sau chứa $d$ và tiếp xúc với mặt cầu $(S)$.
Điểm \(M\) thỏa mãn \(\overrightarrow {OM} = \overrightarrow i - 3\overrightarrow j + \overrightarrow k \) có tọa độ:
Cho điểm $A(0 ; 8 ; 2)$ và mặt cầu $(S)$ có phương trình \((S):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\) và điểm $B(1 ; 1 ; -9)$. Viết phương trình mặt phẳng $(P)$ qua $A$ tiếp xúc với $(S)$ sao cho khoảng cách từ $B$ đến $(P)$ là lớn nhất. Giả sử \(\overrightarrow n = \left( {1;m;n} \right)\) là véctơ pháp tuyến của $(P)$. Lúc đó: