Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):x + 2y = 0\). Phương trình nào sau đây là phương trình đường thẳng qua \(A\left( { - 1;3; - 4} \right)\) cắt trục \(Ox\) và song song với mặt phẳng \(\left( P \right)\):
A.
\(\left\{ \begin{array}{l}x = 5 + 6t\\y = - 3t\\z = 4t\end{array} \right.\)
B.
\(\left\{ \begin{array}{l}x = - 1 + 3t\\y = 3 + t\\z - 4 - t\end{array} \right.\)
C.
\(\dfrac{{x + 1}}{6} = \dfrac{{y - 3}}{2} = \dfrac{{z + 4}}{4}\)
D.
\(\dfrac{{x + 1}}{6} = \dfrac{{y - 3}}{{ - 5}} = \dfrac{{z + 4}}{4}\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow {{n_P}} = \left( {1;2;0} \right)\).
Gọi \(d\) là đường thẳng cần tìm. Ta có \(d \cap Ox = B\left( {b;0;0} \right)\).
Suy ra \(d\) có VTCP \(\overrightarrow {AB} = \left( {b + 1; - 3;4} \right)\).
Do \(d\parallel \left( P \right)\) nên \(\overrightarrow {AB} \bot \overrightarrow {{n_P}} \Rightarrow \left( {b + 1} \right).1 + \left( { - 3} \right).2 + 4.0 = 0 \Leftrightarrow b = 5 \Rightarrow B\left( {5;0;0} \right).\)
Đường thẳng cần tìm đi qua hai điểm \(A,{\rm{ }}B\) nên có phương trình \(\left\{ \begin{array}{l}x = 5 + 6t\\y = - 3t\\z = 4t\end{array} \right.\).
Hướng dẫn giải:
- Gọi tọa độ giao điểm \(B\) của \(d\) với \(Ox\).
- \(d//\left( P \right) \Rightarrow \overrightarrow {AB} .\overrightarrow {{n_P}} = 0\)
Mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow {{n_P}} = \left( {1;2;0} \right)\).
Gọi \(d\) là đường thẳng cần tìm. Ta có \(d \cap Ox = B\left( {b;0;0} \right)\).
Suy ra \(d\) có VTCP \(\overrightarrow {AB} = \left( {b + 1; - 3;4} \right)\).
Do \(d\parallel \left( P \right)\) nên \(\overrightarrow {AB} \bot \overrightarrow {{n_P}} \Rightarrow \left( {b + 1} \right).1 + \left( { - 3} \right).2 + 4.0 = 0 \Leftrightarrow b = 5 \Rightarrow B\left( {5;0;0} \right).\)
Đường thẳng cần tìm đi qua hai điểm \(A,{\rm{ }}B\) nên có phương trình \(\left\{ \begin{array}{l}x = 5 + 6t\\y = - 3t\\z = 4t\end{array} \right.\).
Hướng dẫn giải:
- Gọi tọa độ giao điểm \(B\) của \(d\) với \(Ox\).
- \(d//\left( P \right) \Rightarrow \overrightarrow {AB} .\overrightarrow {{n_P}} = 0\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ trục tọa độ $Oxyz$, cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?
Trong không gian với hệ tọa độ $Oxyz$, phương trình nào dưới đây là phương trình chính tắc của đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3t\\z = - 2 + t\end{array} \right.\)
Trong không gian với hệ tọa độ \(Oxyz\), cho các điểm \(A\left( {0;0;2} \right)\), \(B\left( {1;0;0} \right)\), \(C\left( {2;2;0} \right)\) và \(D\left( {0;m;0} \right)\). Điều kiện cần và đủ của \(m\) để khoảng cách giữa hai đường thẳng \(AB\) và \(CD\) bằng \(2\) là:
Hai véc tơ không cùng phương \(\overrightarrow a ,\overrightarrow b \) được gọi là cặp véc tơ chỉ phương (VTCP) của \(\left( P \right)\) nếu giá của chúng:
Trong không gian $Oxyz$, cho hình bình hành $ABCD$ với $A\left( {0,1,1} \right),{\rm{ }}B\left( { - 2,3,1} \right)$ và $C\left( {4, - 3,1} \right)$. Phương trình nào không phải là phương trình tham số của đường chéo $BD$.
Trong không gian Oxyz, cho \(M\left( -1;3;4 \right)\), mặt phẳng (P) đi qua M cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho M là trực tâm \(\Delta ABC\). Thể tích khối tứ diện OABC bằng
Trong không gian với hệ tọa độ $Oxyz$, cho hai đường thẳng \(d:\left\{ \begin{array}{l}x = 2t\\y = t\\z = 4\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = t'\\y = 3 - t'\\z = 0\end{array} \right.\) . Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng $d$ và $d'$ là:
Trong không gian với hệ tọa độ \(Oxyz\) cho mặt phẳng \(\left( P \right):x - 2y + 2z - 3 = 0\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + 5 = 0\). Giả sử \(M \in \left( P \right)\) và \(N \in \left( S \right)\) sao cho \(\overrightarrow {MN} \) cùng phương với vectơ \(\overrightarrow u = \left( {1;0;1} \right)\) và khoảng cách \(MN\) lớn nhất. Tính \(MN\)
Trong không gian với hệ tọa độ $Oxyz$, cho đường thẳng \(d:\dfrac{x}{1} = \dfrac{{y - 1}}{2} = \dfrac{{z + 1}}{{ - 1}}\) và điểm $A\left( {5,4, - 2} \right)$. Phương trình mặt cầu đi qua điểm $A$ và có tâm là giao điểm của $d$ với mặt phẳng $(Oxy)$ là
Cho hai điểm \(A\left( {1; - 2;0} \right),B\left( {0;1;1} \right)\), độ dài đường cao \(OH\) của tam giác \(OAB\) là:
Trong không gian với hệ trục tọa độ $Oxyz$, cho ba điểm $A\left( {1;2; - 1} \right),B\left( {2; - 1;3} \right),C\left( { - 3;5;1} \right)$. Tìm tọa độ điểm $D$ sao cho tứ giác $ABCD$ là hình bình hành.
Trong không gian với hệ tọa độ Oxyz, viết phươn trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {1;2;3} \right)\) và cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho \(T = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\) đạt giá trị nhỏ nhất.
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - 4y + 4{\rm{z}} - 16 = 0$ và đường thẳng $d:\dfrac{{x - 1}}{1} = \dfrac{{y + 3}}{2} = \dfrac{z}{2}$. Mặt phẳng nào trong các mặt phẳng sau chứa $d$ và tiếp xúc với mặt cầu $(S)$.
Điểm \(M\) thỏa mãn \(\overrightarrow {OM} = \overrightarrow i - 3\overrightarrow j + \overrightarrow k \) có tọa độ:
Cho điểm $A(0 ; 8 ; 2)$ và mặt cầu $(S)$ có phương trình \((S):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\) và điểm $B(1 ; 1 ; -9)$. Viết phương trình mặt phẳng $(P)$ qua $A$ tiếp xúc với $(S)$ sao cho khoảng cách từ $B$ đến $(P)$ là lớn nhất. Giả sử \(\overrightarrow n = \left( {1;m;n} \right)\) là véctơ pháp tuyến của $(P)$. Lúc đó: