Câu hỏi Đáp án 3 năm trước 66

Trong không gian với hệ tọa độ \(Oxyz,\left( \alpha  \right)\) cắt mặt cầu $\left( S \right)$ tâm \(I\left( {1; - 3;3} \right)\) theo giao tuyến là đường tròn tâm \(H\left( {2;0;1} \right)\) , bán kính $r = 2$ . Phương trình (S) là:

A.

\({\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 3} \right)^2} = 18\)                                            


Đáp án chính xác ✅

B.

\({\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 3} \right)^2} = 4\)


C.

\({\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 3} \right)^2} = 18\)                                                


D.

\({\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 3} \right)^2} = 4\)


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: a

Gọi $E $ là một điểm thuộc đường tròn.

Ta có \(IH = d\left( {I,(\alpha)} \right);\,R = IE;\,r=HE\)

\(IH = \sqrt {1 + {3^2} + {(-2)^2}}  = \sqrt {14} \)

Tam giác $IHE$ vuông tại $H$ nên \(IE = \sqrt {I{H^2} + H{E^2}}  = \sqrt {14 + 4}  = \sqrt {18} \)

Suy ra phương trình mặt cầu $(S)$ là:

\({\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 3} \right)^2} = 18\).

Hướng dẫn giải:

+ Xác định bán kính mặt cầu $(S)$.

+Phương trình mặt cầu: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho vật thể \(V\) được giới hạn bởi hai mặt phẳng \(x = 0\) và \(x =  - 2\), mặt phẳng vuông góc với trục \(Ox\) cắt \(V\) theo thiết diện \(S\left( x \right) = 2{x^2}\). Thể tích của \(V\) được tính bởi:

Xem lời giải » 3 năm trước 169
Câu 2: Trắc nghiệm

Cho hàm số \(y=f(x)={{x}^{3}}-3{{x}^{2}}-4x\,\,(C)\). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số (C) và trục hoành. Phát biểu nào sau đây đúng?

Xem lời giải » 3 năm trước 73
Câu 3: Trắc nghiệm

Giả sử rằng \(\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\tan xdx}}{{1 + {{\cos }^2}x}}}  = m\ln \dfrac{3}{2}\). Tìm giá trị của m.

Xem lời giải » 3 năm trước 73
Câu 4: Trắc nghiệm

 Gọi $F(x)$ là một nguyên hàm của hàm số \(f\left( x \right)=-\dfrac{1}{{{\cos }^{2}}x}\) thỏa mãn \(F\left( 0 \right)=1\). Tìm $F(x).$

Xem lời giải » 3 năm trước 73
Câu 5: Trắc nghiệm

Hàm số $y = \sin x$ là một nguyên hàm của hàm số nào trong các hàm số sau?

Xem lời giải » 3 năm trước 70
Câu 6: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt phẳng \(\left( P \right):y-2z+1=0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( P \right)\) ?

Xem lời giải » 3 năm trước 70
Câu 7: Trắc nghiệm

Kết quả tích phân \(I = \int\limits_1^e {\dfrac{{\ln x}}{{x\left( {{{\ln }^2}x + 1} \right)}}dx} \) có dạng \(I = a\ln 2 + b\) với \(a,b \in Q\) . Khẳng định nào sau đây là đúng?

Xem lời giải » 3 năm trước 69
Câu 8: Trắc nghiệm

Cho hàm số $f\left( x \right)$ thỏa mãn $f'\left( x \right){\left[ {f\left( x \right)} \right]^{2018}} = x.{e^x}{\mkern 1mu} {\mkern 1mu} \forall x \in R$ và $f\left( 1 \right) = 1$. Hỏi phương trình $f\left( x \right) =  - \dfrac{1}{e}$ có bao nhiêu nghiệm?

Xem lời giải » 3 năm trước 69
Câu 9: Trắc nghiệm

Trong không gian \(Oxyz\) cho điểm \(M\left( {2;1;5} \right)\). Mặt phẳng \((P)\) đi qua điểm \(M\) và cắt các trục \(Ox,Oy,Oz\) lần lượt tại các điểm \(A,B,C\) sao cho \(M\) là trực tâm của tam giác \(ABC.\) Tính khoảng cách từ điểm \(I\left( {1;2;3} \right)\) đến mặt phẳng \((P)\).

Xem lời giải » 3 năm trước 69
Câu 10: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\left[ a;b \right]\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=a,\,\,x=b\,\,\left( a<b \right)\) là:

Xem lời giải » 3 năm trước 68
Câu 11: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, tìm tất cả các giá trị của $m$ để phương trình \({x^2} + {y^2} + {z^2} - 2x - 2y - 4z + m = 0\)  là phương trình của một mặt cầu.

Xem lời giải » 3 năm trước 67
Câu 12: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz cho hai điểm \(A(1;2;3),\,\,B( - 3; - 4; - 5)\). Tọa độ trung điểm I của đoạn thẳng AB là 

Xem lời giải » 3 năm trước 67
Câu 13: Trắc nghiệm

Cô sin của góc hợp bởi hai véc tơ \(\overrightarrow {{u_1}} \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow {{u_2}} \left( {{x_2};{y_2};{z_2}} \right)\) là:

Xem lời giải » 3 năm trước 67
Câu 14: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho ba vector $\vec a = \left( {2;3; - 5} \right);{\mkern 1mu} {\mkern 1mu} \vec b = \left( {0; - 3;4} \right);{\mkern 1mu} {\mkern 1mu} \vec c = \left( {1; - 2;3} \right)$. Tọa độ vector $\vec n = 3\vec a + 2\vec b - \vec c$ là:

Xem lời giải » 3 năm trước 67
Câu 15: Trắc nghiệm

Nếu đặt $\left\{ \begin{array}{l}u = \ln \left( {x + 2} \right)\\{\rm{d}}v = x\,{\rm{d}}x\end{array} \right.$ thì tích phân $I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} $ trở thành

Xem lời giải » 3 năm trước 67

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »