Cho \(f\left( x \right) = \dfrac{{{x^2}}}{{\sqrt {1 - x} }}\) và \(\int {f\left( x \right)dx = - 2\int {{{\left( {{t^2} - m} \right)}^2}dt} } \) với \(t = \sqrt {1 - x} \) , giá trị của $m$ bằng ?
A.
\(m = 2\)
B.
\(m = - 2\)
C.
\(m = 1\)
D.
\(m = - 1\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
\(f\left( x \right) = \dfrac{{{x^2}}}{{\sqrt {1 - x} }}\) và \(t = \sqrt {1 - x} \Rightarrow 1 - x = {t^2} \Rightarrow x = 1 - {t^2} \Rightarrow dx = - 2tdt\)
\( \Rightarrow \int {f\left( x \right)} dx = \int {\dfrac{{{{\left( {1 - {t^2}} \right)}^2}}}{t}\left( { - 2tdt} \right) = - 2\int {{{\left( {1 - {t^2}} \right)}^2}dt} = - 2\int {{{\left( {{t^2} - 1} \right)}^2}dt} } \)
$\Rightarrow m = 1$
Hướng dẫn giải:
- Bước 1: Đặt \(t = u\left( x \right) = \sqrt {1 - x} \).
- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).
- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).
- Bước 4: Tính nguyên hàm: \(\int {f\left( x \right)dx} = \int {g\left( t \right)dt} = G\left( t \right) + C = G\left( {u\left( x \right)} \right) + C\).
Giải thích thêm:
Một số em có thể nhầm \( - 2\int {{{\left( {1 - {t^2}} \right)}^2}dt} = - 2\int {{{\left( {{t^2} + 1} \right)}^2}dt} \) và chọn nhầm đáp án D là sai.
\(f\left( x \right) = \dfrac{{{x^2}}}{{\sqrt {1 - x} }}\) và \(t = \sqrt {1 - x} \Rightarrow 1 - x = {t^2} \Rightarrow x = 1 - {t^2} \Rightarrow dx = - 2tdt\)
\( \Rightarrow \int {f\left( x \right)} dx = \int {\dfrac{{{{\left( {1 - {t^2}} \right)}^2}}}{t}\left( { - 2tdt} \right) = - 2\int {{{\left( {1 - {t^2}} \right)}^2}dt} = - 2\int {{{\left( {{t^2} - 1} \right)}^2}dt} } \)
$\Rightarrow m = 1$
Hướng dẫn giải:
- Bước 1: Đặt \(t = u\left( x \right) = \sqrt {1 - x} \).
- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).
- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).
- Bước 4: Tính nguyên hàm: \(\int {f\left( x \right)dx} = \int {g\left( t \right)dt} = G\left( t \right) + C = G\left( {u\left( x \right)} \right) + C\).
Giải thích thêm:
Một số em có thể nhầm \( - 2\int {{{\left( {1 - {t^2}} \right)}^2}dt} = - 2\int {{{\left( {{t^2} + 1} \right)}^2}dt} \) và chọn nhầm đáp án D là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho vật thể \(V\) được giới hạn bởi hai mặt phẳng \(x = 0\) và \(x = - 2\), mặt phẳng vuông góc với trục \(Ox\) cắt \(V\) theo thiết diện \(S\left( x \right) = 2{x^2}\). Thể tích của \(V\) được tính bởi:
Cho hàm số \(y=f(x)={{x}^{3}}-3{{x}^{2}}-4x\,\,(C)\). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số (C) và trục hoành. Phát biểu nào sau đây đúng?
Giả sử rằng \(\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\tan xdx}}{{1 + {{\cos }^2}x}}} = m\ln \dfrac{3}{2}\). Tìm giá trị của m.
Gọi $F(x)$ là một nguyên hàm của hàm số \(f\left( x \right)=-\dfrac{1}{{{\cos }^{2}}x}\) thỏa mãn \(F\left( 0 \right)=1\). Tìm $F(x).$
Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt phẳng \(\left( P \right):y-2z+1=0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( P \right)\) ?
Hàm số $y = \sin x$ là một nguyên hàm của hàm số nào trong các hàm số sau?
Trong không gian \(Oxyz\) cho điểm \(M\left( {2;1;5} \right)\). Mặt phẳng \((P)\) đi qua điểm \(M\) và cắt các trục \(Ox,Oy,Oz\) lần lượt tại các điểm \(A,B,C\) sao cho \(M\) là trực tâm của tam giác \(ABC.\) Tính khoảng cách từ điểm \(I\left( {1;2;3} \right)\) đến mặt phẳng \((P)\).
Cho hàm số $f\left( x \right)$ thỏa mãn $f'\left( x \right){\left[ {f\left( x \right)} \right]^{2018}} = x.{e^x}{\mkern 1mu} {\mkern 1mu} \forall x \in R$ và $f\left( 1 \right) = 1$. Hỏi phương trình $f\left( x \right) = - \dfrac{1}{e}$ có bao nhiêu nghiệm?
Kết quả tích phân \(I = \int\limits_1^e {\dfrac{{\ln x}}{{x\left( {{{\ln }^2}x + 1} \right)}}dx} \) có dạng \(I = a\ln 2 + b\) với \(a,b \in Q\) . Khẳng định nào sau đây là đúng?
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\left[ a;b \right]\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=a,\,\,x=b\,\,\left( a<b \right)\) là:
Cô sin của góc hợp bởi hai véc tơ \(\overrightarrow {{u_1}} \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow {{u_2}} \left( {{x_2};{y_2};{z_2}} \right)\) là:
Trong không gian với hệ tọa độ Oxyz, cho ba vector $\vec a = \left( {2;3; - 5} \right);{\mkern 1mu} {\mkern 1mu} \vec b = \left( {0; - 3;4} \right);{\mkern 1mu} {\mkern 1mu} \vec c = \left( {1; - 2;3} \right)$. Tọa độ vector $\vec n = 3\vec a + 2\vec b - \vec c$ là:
Trong không gian với hệ tọa độ Oxyz cho hai điểm \(A(1;2;3),\,\,B( - 3; - 4; - 5)\). Tọa độ trung điểm I của đoạn thẳng AB là
Trong không gian với hệ tọa độ $Oxyz$, tìm tất cả các giá trị của $m$ để phương trình \({x^2} + {y^2} + {z^2} - 2x - 2y - 4z + m = 0\) là phương trình của một mặt cầu.
Nếu đặt $\left\{ \begin{array}{l}u = \ln \left( {x + 2} \right)\\{\rm{d}}v = x\,{\rm{d}}x\end{array} \right.$ thì tích phân $I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} $ trở thành