Tiếp tuyến của đồ thị hàm số $y = \dfrac{{{x^3}}}{3} - 2{x^2} + x + 2$ song song với đường thẳng $y = - 2x + 5$ có phương trình là:
A.
$2x + y - \dfrac{{10}}{3} = 0$ và $2x + y - 2 = 0$
B.
$2x + y + \dfrac{4}{3} = 0$ và $2x + y + 2 = 0$
C.
$2x + y - 4 = 0$ và $2x + y - 1 = 0$
D.
$y = 2x + y - 3 = 0$ và $2x + y + 1 = 0$
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Tiếp tuyến $(d)$ song song với đường thẳng $y = - 2x + 5$ nên có hệ số góc .
Suy ra $y' = - 2$ hay ${x^2} - 4x + 1 = - 2 \Leftrightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 0$ $ \Rightarrow \left[ \begin{gathered}x = 1,y = \dfrac{4}{3} \hfill \\x = 3,y = - 4 \hfill \\ \end{gathered} \right.$
Với $x = 1;y = \dfrac{4}{3}$ thì ${d_1}:y = - 2\left( {x - 1} \right) + \dfrac{4}{3}$ hay ${d_1}:y = - 2x + \dfrac{{10}}{3}$
Với $x = 3;y = - 4$ thì ${d_2}:y = - 2\left( {x - 3} \right) - 4$ hay ${d_2}:y = - 2x + 2$
Hướng dẫn giải:
Tiếp tuyến song song với đường thẳng $y = - 2x + 5$ thì có hệ số góc bằng với hệ số góc của đường thẳng nên $y' = - 2$.
Giải phương trình $y' = - 2$ tìm các nghiệm rồi suy ra tọa độ tiếp điểm, từ đó viết được phương trình tiếp tuyến.
Đường thẳng $d$ đi qua $A\left( {{x_0};{y_0}} \right)$ và có hệ số góc $k$ có phương trình $y = k\left( {x - {x_0}} \right) + {y_0}$
Tiếp tuyến $(d)$ song song với đường thẳng $y = - 2x + 5$ nên có hệ số góc .
Suy ra $y' = - 2$ hay ${x^2} - 4x + 1 = - 2 \Leftrightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 0$ $ \Rightarrow \left[ \begin{gathered}x = 1,y = \dfrac{4}{3} \hfill \\x = 3,y = - 4 \hfill \\ \end{gathered} \right.$
Với $x = 1;y = \dfrac{4}{3}$ thì ${d_1}:y = - 2\left( {x - 1} \right) + \dfrac{4}{3}$ hay ${d_1}:y = - 2x + \dfrac{{10}}{3}$
Với $x = 3;y = - 4$ thì ${d_2}:y = - 2\left( {x - 3} \right) - 4$ hay ${d_2}:y = - 2x + 2$
Hướng dẫn giải:
Tiếp tuyến song song với đường thẳng $y = - 2x + 5$ thì có hệ số góc bằng với hệ số góc của đường thẳng nên $y' = - 2$.
Giải phương trình $y' = - 2$ tìm các nghiệm rồi suy ra tọa độ tiếp điểm, từ đó viết được phương trình tiếp tuyến.
Đường thẳng $d$ đi qua $A\left( {{x_0};{y_0}} \right)$ và có hệ số góc $k$ có phương trình $y = k\left( {x - {x_0}} \right) + {y_0}$
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là sai?
Cho hàm số $y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx.$ Tìm $m$ để đồ thị hàm số có hai điểm cực trị là $A, B$ sao cho đường thẳng $AB$ vuông góc với $d:\,x - y - 9 = 0$
Cho $n \in Z, n>0$, với điều kiện nào của $a$ thì đẳng thức sau xảy ra: ${a^{ - n}} = \dfrac{1}{{{a^n}}}$?
Với điều kiện các logarit đều có nghĩa, chọn mệnh đề đúng:
Nếu $\log_a b{\rm{ }} = {\rm{ }}p$ thì $\log_a{a^2}{b^4}$ bằng:
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?
Cho hai đồ thị hàm số $y = {x^3} + 2{x^2} - x + 1$ và đồ thị hàm số $y = {x^2} - x + 3$ có tất cả bao nhiêu điểm chung?
Chọn kết luận đúng: Đồ thị hàm số bậc bốn trùng phương
Biết đồ thị các hàm số $y = {x^3} + \dfrac{5}{4}x - 2$ và $y = {x^2} + x - 2$ tiếp xúc nhau tại điểm $M({x_0}\,;\,{y_0})$. Tìm ${x_0}.$
Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\) có 5 điểm cực trị?
Cho các phát biểu sau:
(I). Nếu \(C = \sqrt {AB} \) thì \(2\ln C = \ln A + \ln B\) với $A, B$ là các biểu thức luôn nhận giá trị dương.
(II). \(\left( {a - 1} \right){\log _a}x \ge 0 \Leftrightarrow x \ge 1\) với \(a > 0,a \ne 1\)
(III). \({m^{{{\log }_a}m}} = {n^{{{\log }_a}n}},\) với \(m,n > 0\) và \(a > 0,a \ne 1\)
(IV).\(\mathop {\lim }\limits_{x \to + \infty } {\log _{\frac{1}{2}}}x = - \infty \)
Số phát biểu đúng là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh B, \(AB = 4,SA = SB = SC = 12\). Gọi M, N, E lần lượt là trung điểm AC, BC, AB. Trên cạnh SB lấy điểm F sao cho \(\dfrac{{BF}}{{BS}} = \dfrac{2}{3}\). Thể tích khối tứ diện \(MNEF\) bằng
