Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
A đúng vì đồ thị hàm số có đường tiệm cận đứng là \(x = 1\)
B đúng vì hàm số luôn đồng biến nên không có cực trị
C đúng vì đồ thị hàm số có đường tiệm cận ngang \(y = 2\)
D sai vì hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\) chứ không đồng biến trên toàn bộ tập số thực \(\mathbb{R}\)
Hướng dẫn giải:
Quan sát bảng biến thiên và tìm các đường tiệm cận của đồ thị hàm số, các khoảng đồng biến, nghịch biến của hàm số.
A đúng vì đồ thị hàm số có đường tiệm cận đứng là \(x = 1\)
B đúng vì hàm số luôn đồng biến nên không có cực trị
C đúng vì đồ thị hàm số có đường tiệm cận ngang \(y = 2\)
D sai vì hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\) chứ không đồng biến trên toàn bộ tập số thực \(\mathbb{R}\)
Hướng dẫn giải:
Quan sát bảng biến thiên và tìm các đường tiệm cận của đồ thị hàm số, các khoảng đồng biến, nghịch biến của hàm số.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx.$ Tìm $m$ để đồ thị hàm số có hai điểm cực trị là $A, B$ sao cho đường thẳng $AB$ vuông góc với $d:\,x - y - 9 = 0$
Cho $n \in Z, n>0$, với điều kiện nào của $a$ thì đẳng thức sau xảy ra: ${a^{ - n}} = \dfrac{1}{{{a^n}}}$?
Với điều kiện các logarit đều có nghĩa, chọn mệnh đề đúng:
Nếu $\log_a b{\rm{ }} = {\rm{ }}p$ thì $\log_a{a^2}{b^4}$ bằng:
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?
Cho hai đồ thị hàm số $y = {x^3} + 2{x^2} - x + 1$ và đồ thị hàm số $y = {x^2} - x + 3$ có tất cả bao nhiêu điểm chung?
Chọn kết luận đúng: Đồ thị hàm số bậc bốn trùng phương
Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\) có 5 điểm cực trị?
Biết đồ thị các hàm số $y = {x^3} + \dfrac{5}{4}x - 2$ và $y = {x^2} + x - 2$ tiếp xúc nhau tại điểm $M({x_0}\,;\,{y_0})$. Tìm ${x_0}.$
Cho các phát biểu sau:
(I). Nếu \(C = \sqrt {AB} \) thì \(2\ln C = \ln A + \ln B\) với $A, B$ là các biểu thức luôn nhận giá trị dương.
(II). \(\left( {a - 1} \right){\log _a}x \ge 0 \Leftrightarrow x \ge 1\) với \(a > 0,a \ne 1\)
(III). \({m^{{{\log }_a}m}} = {n^{{{\log }_a}n}},\) với \(m,n > 0\) và \(a > 0,a \ne 1\)
(IV).\(\mathop {\lim }\limits_{x \to + \infty } {\log _{\frac{1}{2}}}x = - \infty \)
Số phát biểu đúng là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh B, \(AB = 4,SA = SB = SC = 12\). Gọi M, N, E lần lượt là trung điểm AC, BC, AB. Trên cạnh SB lấy điểm F sao cho \(\dfrac{{BF}}{{BS}} = \dfrac{2}{3}\). Thể tích khối tứ diện \(MNEF\) bằng
Cho hàm số $y = \dfrac{{2x + b}}{{cx + d}}$ có bảng biến thiên:

Giá trị của ${c^2} - {d^2}$ bằng:
