Tập hợp các điểm biểu diễn hình học của số phức $z$ là đường thẳng $\Delta $ như hình vẽ. Tìm giá trị nhỏ nhất của \(\left| z \right|\).
A.
${\left| z \right|_{\min }} = 2.$
B.
${\left| z \right|_{\min }} = 1.$
C.
${\left| z \right|_{\min }} = \sqrt 2 .$
D.
${\left| z \right|_{\min }} = \dfrac{1}{{\sqrt 2 }}.$
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
\(\Delta \) đi qua hai điểm \(\left( {1;0} \right)\) và \(\left( {0;1} \right)\) nên có phương trình $\Delta :x + y - 1 = 0$.
Khi đó ${\left| z \right|_{\min }} = d\left[ {O,\Delta } \right] = \dfrac{{\left| { - 1} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \dfrac{1}{{\sqrt 2 }}.$
Hướng dẫn giải:
- Viết phương trình \(\Delta \) suy ra khoảng cách theo công thức \(d\left( {A,\Delta } \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
\(\Delta \) đi qua hai điểm \(\left( {1;0} \right)\) và \(\left( {0;1} \right)\) nên có phương trình $\Delta :x + y - 1 = 0$.
Khi đó ${\left| z \right|_{\min }} = d\left[ {O,\Delta } \right] = \dfrac{{\left| { - 1} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \dfrac{1}{{\sqrt 2 }}.$
Hướng dẫn giải:
- Viết phương trình \(\Delta \) suy ra khoảng cách theo công thức \(d\left( {A,\Delta } \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi ${z_1},{z_2}$ là các nghiệm của phương trình: $z + \dfrac{1}{z} = - 1$. Giá trị của $P = {z_1}^3 + {z_2}^3$ là:
Với hai số phức bất kì ${z_1},{z_2}$ , khẳng định nào sau đây đúng:
Nghiệm của phương trình: ${z^2} + (1 - i)z - 18 + 13i = 0$ là:
Gọi \(A\) là điểm biểu diễn của số phức \(z = 3 + 2i\) và \(B\) là điểm biểu diễn của số phức \(z' = 2 + 3i\). Mệnh đề nào sau đây là đúng?
Gọi \({z_1}\) và \({z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 10 = 0\). Tính giá trị biểu thức \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\)
Gọi \(S\) là tổng phần thực và phần ảo của số phức $w = {z^3} - i$, biết $z$ thỏa mãn $z + 2 - 4i = \left( {2 - i} \right)\overline {iz} $. Mệnh đề nào sau đây đúng?
Cho hai số phức ${z_1} = 1 + i$ và ${z_2} = 2 - 3i$. Tính môđun của số phức ${z_1} - {z_2}.$
Biết rằng có duy nhất một cặp số thực $\left( {x;y} \right)$ thỏa mãn $\left( {x + y} \right) + \left( {x - y} \right)i = 5 + 3i$. Tính \(S = x + y.\)
Trong các số phức z thỏa mãn \(\left| {z + 3 + 4i} \right| = 2\) , gọi \({z_0}\) là số phức có mô đun nhỏ nhất. Khi đó:
Cho các số phức \({z_1},{\rm{ }}{z_2}\) thỏa mãn \(\left| {{z_1}} \right| = 3,{\rm{ }}\left| {{z_2}} \right| = 4\) và \(\left| {{z_1} - {z_2}} \right| = 5.\) Gọi \(A,{\rm{ }}B\) lần lượt là điểm biểu diển các số phức \({z_1},{\rm{ }}{z_2}\) Tính diện tích \(S\) của tam giác \(OAB\) với \(O\) là gốc tọa độ.
Cho số phức $z = z_1^2 + {\left| {{z_1}} \right|^2}$ với ${z_1}$ là số thuần ảo. Mệnh đề nào sau đây đúng?
Tìm phần ảo \(b\) của số phức $w = 1 + \left( {1 + i} \right) + {\left( {1 + i} \right)^2} + {\left( {1 + i} \right)^3} + ... + {\left( {1 + i} \right)^{2018}}$.