Câu hỏi Đáp án 3 năm trước 79

Nếu \(\int\limits_0^a {\left( {\cos x + \sin x} \right)dx}  = 0\left( {0 < a < 2\pi } \right)\) thì giá trị của \(a\) là:

A.

\(\dfrac{\pi }{4}\)       


B.

\(\dfrac{\pi }{2}\)       


C.

\(\dfrac{{3\pi }}{2}\)             


Đáp án chính xác ✅

D.

\(\dfrac{\pi }{3}\)


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: c

Ta có:

\(\int\limits_0^a {\left( {\cos x + \sin x} \right)dx} {\rm{\;}} = 0\) \( \Leftrightarrow \left. {\sin x} \right|_0^a - \left. {\cos x} \right|_0^a = 0\) \( \Leftrightarrow \sin a - \cos a + 1 = 0\)

\(\begin{array}{l} \Leftrightarrow \sin a - \cos a =  - 1\\ \Leftrightarrow \dfrac{1}{{\sqrt 2 }}.\sin a - \dfrac{1}{{\sqrt 2 }}.\cos a =  - \dfrac{1}{{\sqrt 2 }}\\ \Leftrightarrow \sin a.\cos \dfrac{\pi }{4} - \cos a.\sin \dfrac{\pi }{4} =  - \dfrac{1}{{\sqrt 2 }}\end{array}\)

\( \Leftrightarrow \sin \left( {a - \dfrac{\pi }{4}} \right) = {\rm{\;}} - \dfrac{1}{{\sqrt 2 }}\)

\( \Leftrightarrow \sin \left( {a - \dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{{ - \pi }}{4}} \right)\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a - \dfrac{\pi }{4} = {\rm{\;}} - \dfrac{\pi }{4} + k2\pi }\\{a - \dfrac{\pi }{4} = \dfrac{{5\pi }}{4} + k2\pi }\end{array}} \right.\)

$\Leftrightarrow a = \dfrac{{3\pi }}{2}\left( {0 < a < 2\pi } \right)$

Hướng dẫn giải:

Bước 1: Sử dụng công thức nguyên hàm hàm lượng giác \(\int {\sin xdx}  =  - \cos x + C;\int {\cos xdx}  = \sin x + C\) 

Bước 2: Nhân cả hai vế với $\dfrac{1}{{\sqrt 2 }}$ và giải phương trình lượng giác bậc nhất đối với sin và cos (ẩn a).

Bước 3: Dựa vào điều kiện để kết luận nghiệm.

Giải thích thêm:

Một số em tính nhầm nguyên hàm của hàm sin và cos sẽ dẫn đến sai nguyên hàm và tích phân dẫn đến chọn sai đáp án B là sai.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho vật thể \(V\) được giới hạn bởi hai mặt phẳng \(x = 0\) và \(x =  - 2\), mặt phẳng vuông góc với trục \(Ox\) cắt \(V\) theo thiết diện \(S\left( x \right) = 2{x^2}\). Thể tích của \(V\) được tính bởi:

Xem lời giải » 3 năm trước 176
Câu 2: Trắc nghiệm

Cho \(f\left( x \right) = \dfrac{{{x^2}}}{{\sqrt {1 - x} }}\) và \(\int {f\left( x \right)dx =  - 2\int {{{\left( {{t^2} - m} \right)}^2}dt} } \) với \(t = \sqrt {1 - x} \) , giá trị của $m$ bằng ?

Xem lời giải » 3 năm trước 91
Câu 3: Trắc nghiệm

Hàm số $y = \sin x$ là một nguyên hàm của hàm số nào trong các hàm số sau?

Xem lời giải » 3 năm trước 86
Câu 4: Trắc nghiệm

Giả sử rằng \(\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\tan xdx}}{{1 + {{\cos }^2}x}}}  = m\ln \dfrac{3}{2}\). Tìm giá trị của m.

Xem lời giải » 3 năm trước 85
Câu 5: Trắc nghiệm

Cho hàm số \(y=f(x)={{x}^{3}}-3{{x}^{2}}-4x\,\,(C)\). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số (C) và trục hoành. Phát biểu nào sau đây đúng?

Xem lời giải » 3 năm trước 83
Câu 6: Trắc nghiệm

Thể tích vật thể nằm giữa hai mặt phẳng \(x=0\) và \(x=2\), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x \(\left( 0\le x\le 2 \right)\) là một nửa đường tròn đường kính \(\sqrt{5}{{x}^{2}}\) bằng :

Xem lời giải » 3 năm trước 83
Câu 7: Trắc nghiệm

Cho hàm số $f\left( x \right)$ thỏa mãn $f'\left( x \right){\left[ {f\left( x \right)} \right]^{2018}} = x.{e^x}{\mkern 1mu} {\mkern 1mu} \forall x \in R$ và $f\left( 1 \right) = 1$. Hỏi phương trình $f\left( x \right) =  - \dfrac{1}{e}$ có bao nhiêu nghiệm?

Xem lời giải » 3 năm trước 83
Câu 8: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt phẳng \(\left( P \right):y-2z+1=0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( P \right)\) ?

Xem lời giải » 3 năm trước 82
Câu 9: Trắc nghiệm

Nếu đặt $\left\{ \begin{array}{l}u = \ln \left( {x + 2} \right)\\{\rm{d}}v = x\,{\rm{d}}x\end{array} \right.$ thì tích phân $I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} $ trở thành

Xem lời giải » 3 năm trước 82
Câu 10: Trắc nghiệm

Kết quả tích phân \(I = \int\limits_1^e {\dfrac{{\ln x}}{{x\left( {{{\ln }^2}x + 1} \right)}}dx} \) có dạng \(I = a\ln 2 + b\) với \(a,b \in Q\) . Khẳng định nào sau đây là đúng?

Xem lời giải » 3 năm trước 82
Câu 11: Trắc nghiệm

Biết rằng$\int {{e^{2x}}\cos 3xdx = {e^{2x}}\left( {a\cos 3x + b\sin 3x} \right) + c} $, trong đó $a, b, c$ là các hằng số, khi đó tổng $a + b$ có giá trị là:

Xem lời giải » 3 năm trước 82
Câu 12: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho ba vector $\vec a = \left( {2;3; - 5} \right);{\mkern 1mu} {\mkern 1mu} \vec b = \left( {0; - 3;4} \right);{\mkern 1mu} {\mkern 1mu} \vec c = \left( {1; - 2;3} \right)$. Tọa độ vector $\vec n = 3\vec a + 2\vec b - \vec c$ là:

Xem lời giải » 3 năm trước 81
Câu 13: Trắc nghiệm

Trong không gian \(Oxyz\) cho điểm \(M\left( {2;1;5} \right)\). Mặt phẳng \((P)\) đi qua điểm \(M\) và cắt các trục \(Ox,Oy,Oz\) lần lượt tại các điểm \(A,B,C\) sao cho \(M\) là trực tâm của tam giác \(ABC.\) Tính khoảng cách từ điểm \(I\left( {1;2;3} \right)\) đến mặt phẳng \((P)\).

Xem lời giải » 3 năm trước 81
Câu 14: Trắc nghiệm

Cô sin của góc hợp bởi hai véc tơ \(\overrightarrow {{u_1}} \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow {{u_2}} \left( {{x_2};{y_2};{z_2}} \right)\) là:

Xem lời giải » 3 năm trước 81
Câu 15: Trắc nghiệm

 Gọi $F(x)$ là một nguyên hàm của hàm số \(f\left( x \right)=-\dfrac{1}{{{\cos }^{2}}x}\) thỏa mãn \(F\left( 0 \right)=1\). Tìm $F(x).$

Xem lời giải » 3 năm trước 80

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »