Một người gửi vào ngân hàng số tiền $A$ đồng, lãi suất $r\% $ mỗi tháng theo hình thức lãi kép, gửi theo phương thức có kì hạn $3$ tháng. Công thức tính số tiền cả vốn lẫn lãi mà người đó có sau $2$ năm là:
A.
$T = A{\left( {1 + 3.r\% } \right)^8}$
B.
$T = A{\left( {1 + r\% } \right)^8}$
C.
$T = A{\left( {1 + r\% } \right)^{24}}$
D.
$T = A{\left( {1 + 3.r\% } \right)^{24}}$
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Ta có $m = 3$, mỗi kì hạn là $3$ tháng nên $2$ năm có $2.12:3 = 8$ kì hạn.
Vậy $T = A{\left( {1 + 3.r\% } \right)^8}$.
Hướng dẫn giải:
Sử dụng công thức tính số tiền cho bài toán lãi suất kép có kì hạn $T = A{\left( {1 + mr} \right)^N}$.
Giải thích thêm:
Nhiều HS sẽ chọn đáp án C vì không phân biệt được giữa hai phương thức không kì hạn và có kì hạn.
Cần lưu ý: $N$ là số kì hạn không phải số tháng và mỗi kì hạn ở đây là $3$ tháng nên có $8$ kì hạn.
Ta có $m = 3$, mỗi kì hạn là $3$ tháng nên $2$ năm có $2.12:3 = 8$ kì hạn.
Vậy $T = A{\left( {1 + 3.r\% } \right)^8}$.
Hướng dẫn giải:
Sử dụng công thức tính số tiền cho bài toán lãi suất kép có kì hạn $T = A{\left( {1 + mr} \right)^N}$.
Giải thích thêm:
Nhiều HS sẽ chọn đáp án C vì không phân biệt được giữa hai phương thức không kì hạn và có kì hạn.
Cần lưu ý: $N$ là số kì hạn không phải số tháng và mỗi kì hạn ở đây là $3$ tháng nên có $8$ kì hạn.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho các số \(a,\ b,\ c\) và \(a,\ c\ne 1\). Khẳng định nào sau đây đúng?
Cho $a,{\rm{ }}b,{\rm{ }}c$ là các số thực dương thỏa mãn ${a^2} = bc.$ Tính $S = 2\ln a - \ln b - \ln c$.
Biết rằng phương trình $2\log \left( {x + 2} \right) + \log 4 = \log x + 4\log 3$ có hai nghiệm phân biệt \({x_1},{\rm{ }}{x_2}\,\,\left( {{x_1} < {x_2}} \right)\). Tính \(P = \dfrac{{{x_1}}}{{{x_2}}}.\)
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng
Cho hai số thực dương $x, y$ thỏa mãn \({2^x} + {2^y} = 4\). Tìm giá trị lớn nhất \({P_{\max }}\) của biểu thức\(P = (2{x^2} + y)(2{y^2} + x) + 9xy\).
Đặt ${\log _2}3 = a;{\log _2}5 = b$. Hãy biểu diễn $P = {\log _3}240$ theo $a$ và $b$.
Gọi $(C)$ là đồ thị hàm số \(y = \log x\). Tìm khẳng định đúng?
Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \(4.{\left( {{{\log }_2}\sqrt x } \right)^2} + {\log _2}x + m \ge 0\) nghiệm đúng với mọi giá trị \(x \in \left[ {1;64} \right]\).
Cho \({\left( {\sqrt 5 - 1} \right)^m} < {\left( {\sqrt 5 - 1} \right)^n}\). Khẳng định nào dưới đây đúng?
Bất phương trình \({\left( {\sqrt 2 } \right)^{{x^2} - 2x}} \le {\left( {\sqrt 2 } \right)^3}\) có tập nghiệm là:
Thầy C gửi \(5\) triệu đồng vào ngân hàng với lãi suất \(0,7\% \)/tháng. Chưa đầy một năm thì lãi suất tăng lên thành \(1,15\% \)/tháng. Tiếp theo, sáu tháng sau lãi suất chỉ còn \(0,9\% \)/tháng. Thầy C tiếp tục gửi thêm một số tháng nữa rồi rút cả vỗn lẫn lãi được 5787710,707 đồng. Hỏi thầy C đã gửi tổng thời gian bao nhiêu tháng?
Hàm số \(y = {\log _a}x\left( {0 < a \ne 1} \right)\) xác định trên:
Trong các hàm số sau đây, hàm số nào đồng biến trên các khoảng xác định?
Nếu ${\left( {a - 2} \right)^{ - \dfrac{1}{4}}} \le {\left( {a - 2} \right)^{ - \dfrac{1}{3}}}$ thì khẳng định đúng là:
Cho hàm số $y = x.{e^{ - x}}$. Chọn kết luận đúng: