Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Dễ thấy đa thức dưới mẫu có hai nghiệm $x = 1$ và $x = - 2$ và hai nghiệm này đều không phải nghiệm của tử thức.
$ \Rightarrow $ Đồ thị hàm số đã cho có $2$ tiệm cận đứng.
Hướng dẫn giải:
Đường thẳng $x = {x_0}$ là tiệm cận đứng của đồ thị hàm phân thức $y = \dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ nếu ${x_0}$ là nghiệm của đa thức $g\left( x \right)$ nhưng không phải nghiệm của đa thức $f\left( x \right)$
Giải thích thêm:
Đối với hàm phân thức, trước khi kết luận có bao nhiêu tiệm cận đứng cần kiểm tra xem nghiệm của tử có trùng với nghiệm của mẫu không.
Nếu có nghiệm ${x_1}$ là nghiệm của cả tử và mẫu thì đường $x = {x_1}$ không phải là tiệm cận đứng của đồ thị hàm số.
Dễ thấy đa thức dưới mẫu có hai nghiệm $x = 1$ và $x = - 2$ và hai nghiệm này đều không phải nghiệm của tử thức.
$ \Rightarrow $ Đồ thị hàm số đã cho có $2$ tiệm cận đứng.
Hướng dẫn giải:
Đường thẳng $x = {x_0}$ là tiệm cận đứng của đồ thị hàm phân thức $y = \dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ nếu ${x_0}$ là nghiệm của đa thức $g\left( x \right)$ nhưng không phải nghiệm của đa thức $f\left( x \right)$
Giải thích thêm:
Đối với hàm phân thức, trước khi kết luận có bao nhiêu tiệm cận đứng cần kiểm tra xem nghiệm của tử có trùng với nghiệm của mẫu không.
Nếu có nghiệm ${x_1}$ là nghiệm của cả tử và mẫu thì đường $x = {x_1}$ không phải là tiệm cận đứng của đồ thị hàm số.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là sai?
Cho hàm số $y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx.$ Tìm $m$ để đồ thị hàm số có hai điểm cực trị là $A, B$ sao cho đường thẳng $AB$ vuông góc với $d:\,x - y - 9 = 0$
Nếu $\log_a b{\rm{ }} = {\rm{ }}p$ thì $\log_a{a^2}{b^4}$ bằng:
Cho $n \in Z, n>0$, với điều kiện nào của $a$ thì đẳng thức sau xảy ra: ${a^{ - n}} = \dfrac{1}{{{a^n}}}$?
Với điều kiện các logarit đều có nghĩa, chọn mệnh đề đúng:
Cho các phát biểu sau:
(I). Nếu \(C = \sqrt {AB} \) thì \(2\ln C = \ln A + \ln B\) với $A, B$ là các biểu thức luôn nhận giá trị dương.
(II). \(\left( {a - 1} \right){\log _a}x \ge 0 \Leftrightarrow x \ge 1\) với \(a > 0,a \ne 1\)
(III). \({m^{{{\log }_a}m}} = {n^{{{\log }_a}n}},\) với \(m,n > 0\) và \(a > 0,a \ne 1\)
(IV).\(\mathop {\lim }\limits_{x \to + \infty } {\log _{\frac{1}{2}}}x = - \infty \)
Số phát biểu đúng là
Biết đồ thị các hàm số $y = {x^3} + \dfrac{5}{4}x - 2$ và $y = {x^2} + x - 2$ tiếp xúc nhau tại điểm $M({x_0}\,;\,{y_0})$. Tìm ${x_0}.$
Chọn kết luận đúng: Đồ thị hàm số bậc bốn trùng phương
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?
Cho hai đồ thị hàm số $y = {x^3} + 2{x^2} - x + 1$ và đồ thị hàm số $y = {x^2} - x + 3$ có tất cả bao nhiêu điểm chung?
Cho các đồ thị hàm số \(y = {a^x},y = {b^x},y = {c^x}\left( {0 < a,b,c \ne 1} \right)\), chọn khẳng định đúng:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh B, \(AB = 4,SA = SB = SC = 12\). Gọi M, N, E lần lượt là trung điểm AC, BC, AB. Trên cạnh SB lấy điểm F sao cho \(\dfrac{{BF}}{{BS}} = \dfrac{2}{3}\). Thể tích khối tứ diện \(MNEF\) bằng
