Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) với \(a,\,\,b,\,\,c,\,\,d \in \mathbb{R}\), \(c \ne 0\) có đồ thị \(y = f'\left( x \right)\) như hình vẽ bên. Biết rằng giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ {1;2} \right]\) bằng \(3\). Giá trị của \(f\left( { - 2} \right)\) bằng:

A.
\( - 3\)
B.
\( - 5\)
C.
\( - 2\)
D.
\( - 1\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Dựa vào đồ thị hàm số ta thấy \(f'\left( x \right) < 0\,\,\forall x \in \mathbb{R}\backslash \left\{ { - 1} \right\}\), do đó \(f'\left( x \right) < 0\,\,\forall x \in \left( {1;2} \right)\).
\( \Rightarrow \) Hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left( {1;2} \right)\) \( \Rightarrow \mathop {\min }\limits_{\left[ {1;2} \right]} f\left( x \right) = f\left( 2 \right)\)\( \Rightarrow \frac{{2a + b}}{{2c + d}} = 3\).
Ta có: \(f'\left( x \right) = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}\) có TXĐ \(D = \mathbb{R}\backslash \left\{ { - 1} \right\} \Rightarrow \) \( - c + d = 0 \Leftrightarrow c = d\).
Đồ thị hàm số \(y = f'\left( x \right)\) đi qua điểm \(\left( {0; - 3} \right)\) \( \Rightarrow \frac{{ad - bc}}{{{d^2}}} = - 3\).
\( \Rightarrow \frac{{ad - bd}}{{{d^2}}} = - 3 \Leftrightarrow a - b = - 3d = - 3c\).
Lại có \(\frac{{2a + b}}{{2c + d}} = 3 \Leftrightarrow \frac{{2a + b}}{{2c + c}} = 3\) \( \Leftrightarrow 2a + b = 9c\).
Ta có: \(\left\{ \begin{array}{l}a - b = - 3c\\2a + b = 9c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2c\\b = 5c\end{array} \right.\)\( \Rightarrow y = \frac{{2cx + 5c}}{{cx + c}}\).
Vậy \(y\left( { - 2} \right) = \frac{{ - 4c + 5c}}{{ - 2c + c}} = - 1\).
Hướng dẫn giải:
- Dựa vào dấu \(f'\left( x \right)\) xác định GTLN của hàm số \(y = f\left( x \right)\) trên \(\left[ {1;2} \right]\).
- Dựa vào TXĐ của hàm số \(y = f'\left( x \right)\) và điểm đi qua \(\left( {0; - 3} \right)\), biểu diễn 3 trong 4 ẩn \(a,\,\,b,\,\,c,\,\,d\) theo ẩn còn lại.
- Tính \(f\left( { - 2} \right)\).
Dựa vào đồ thị hàm số ta thấy \(f'\left( x \right) < 0\,\,\forall x \in \mathbb{R}\backslash \left\{ { - 1} \right\}\), do đó \(f'\left( x \right) < 0\,\,\forall x \in \left( {1;2} \right)\).
\( \Rightarrow \) Hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left( {1;2} \right)\) \( \Rightarrow \mathop {\min }\limits_{\left[ {1;2} \right]} f\left( x \right) = f\left( 2 \right)\)\( \Rightarrow \frac{{2a + b}}{{2c + d}} = 3\).
Ta có: \(f'\left( x \right) = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}\) có TXĐ \(D = \mathbb{R}\backslash \left\{ { - 1} \right\} \Rightarrow \) \( - c + d = 0 \Leftrightarrow c = d\).
Đồ thị hàm số \(y = f'\left( x \right)\) đi qua điểm \(\left( {0; - 3} \right)\) \( \Rightarrow \frac{{ad - bc}}{{{d^2}}} = - 3\).
\( \Rightarrow \frac{{ad - bd}}{{{d^2}}} = - 3 \Leftrightarrow a - b = - 3d = - 3c\).
Lại có \(\frac{{2a + b}}{{2c + d}} = 3 \Leftrightarrow \frac{{2a + b}}{{2c + c}} = 3\) \( \Leftrightarrow 2a + b = 9c\).
Ta có: \(\left\{ \begin{array}{l}a - b = - 3c\\2a + b = 9c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2c\\b = 5c\end{array} \right.\)\( \Rightarrow y = \frac{{2cx + 5c}}{{cx + c}}\).
Vậy \(y\left( { - 2} \right) = \frac{{ - 4c + 5c}}{{ - 2c + c}} = - 1\).
Hướng dẫn giải:
- Dựa vào dấu \(f'\left( x \right)\) xác định GTLN của hàm số \(y = f\left( x \right)\) trên \(\left[ {1;2} \right]\).
- Dựa vào TXĐ của hàm số \(y = f'\left( x \right)\) và điểm đi qua \(\left( {0; - 3} \right)\), biểu diễn 3 trong 4 ẩn \(a,\,\,b,\,\,c,\,\,d\) theo ẩn còn lại.
- Tính \(f\left( { - 2} \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là sai?
Cho hàm số $y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx.$ Tìm $m$ để đồ thị hàm số có hai điểm cực trị là $A, B$ sao cho đường thẳng $AB$ vuông góc với $d:\,x - y - 9 = 0$
Cho $n \in Z, n>0$, với điều kiện nào của $a$ thì đẳng thức sau xảy ra: ${a^{ - n}} = \dfrac{1}{{{a^n}}}$?
Với điều kiện các logarit đều có nghĩa, chọn mệnh đề đúng:
Nếu $\log_a b{\rm{ }} = {\rm{ }}p$ thì $\log_a{a^2}{b^4}$ bằng:
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?
Cho hai đồ thị hàm số $y = {x^3} + 2{x^2} - x + 1$ và đồ thị hàm số $y = {x^2} - x + 3$ có tất cả bao nhiêu điểm chung?
Chọn kết luận đúng: Đồ thị hàm số bậc bốn trùng phương
Biết đồ thị các hàm số $y = {x^3} + \dfrac{5}{4}x - 2$ và $y = {x^2} + x - 2$ tiếp xúc nhau tại điểm $M({x_0}\,;\,{y_0})$. Tìm ${x_0}.$
Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\) có 5 điểm cực trị?
Cho các phát biểu sau:
(I). Nếu \(C = \sqrt {AB} \) thì \(2\ln C = \ln A + \ln B\) với $A, B$ là các biểu thức luôn nhận giá trị dương.
(II). \(\left( {a - 1} \right){\log _a}x \ge 0 \Leftrightarrow x \ge 1\) với \(a > 0,a \ne 1\)
(III). \({m^{{{\log }_a}m}} = {n^{{{\log }_a}n}},\) với \(m,n > 0\) và \(a > 0,a \ne 1\)
(IV).\(\mathop {\lim }\limits_{x \to + \infty } {\log _{\frac{1}{2}}}x = - \infty \)
Số phát biểu đúng là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh B, \(AB = 4,SA = SB = SC = 12\). Gọi M, N, E lần lượt là trung điểm AC, BC, AB. Trên cạnh SB lấy điểm F sao cho \(\dfrac{{BF}}{{BS}} = \dfrac{2}{3}\). Thể tích khối tứ diện \(MNEF\) bằng
