Cho hàm số $y = \dfrac{{2x + 2017}}{{\left| x \right| + 1}}.$ Mệnh đề nào là đúng?
A.
Đồ thị hàm số có đúng một tiệm cận ngang là đường thẳng $y = 2$ và không có tiệm có đứng.
B.
Đồ thị hàm số không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng $x = - 1.$
C.
Đồ thị hàm số không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng $x = - 1;\;\;x = 1.$
D.
Đồ thị hàm số có hai tiệm cận ngang là các đường thẳng $y = - 2;\;\;y = 2$ và không có tiệm cận đứng.
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Ta có: $\mathop {\lim }\limits_{x \to + \infty } {\mkern 1mu} y = \mathop {\lim }\limits_{x \to + \infty } {\mkern 1mu} \dfrac{{2x + 2017}}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } {\mkern 1mu} \dfrac{{2 + \dfrac{{2017}}{x}}}{{1 + \dfrac{1}{x}}} = 2 \Rightarrow y = 2$ là TCN
$\mathop {\lim }\limits_{x \to - \infty } {\mkern 1mu} y = \mathop {\lim }\limits_{x \to - \infty } {\mkern 1mu} \dfrac{{2x + 2017}}{{ - x + 1}} = \mathop {\lim }\limits_{x \to + \infty } {\mkern 1mu} \dfrac{{2 + \dfrac{{2017}}{x}}}{{ - 1 + \dfrac{1}{x}}} = 2 \Rightarrow y = - 2$ là TCN.
Vậy đồ thị hàm số có $2$ tiệm cận ngang là các đường thẳng $y = - 2;y = 2$.
Hướng dẫn giải:
Sử dụng định nghĩa tiệm cận:
+) Đường thẳng $y = a$ là tiệm cận ngang của đồ thị hàm số $y = f\left( x \right)$ khi một trong hai điều kiện sau được thỏa mãn$\mathop {\lim }\limits_{x \to + \infty } {\mkern 1mu} y = a;\mathop {\lim }\limits_{x \to - \infty } {\mkern 1mu} y = a$.
+) Đường thẳng $x = b$ là tiệm cận đứng của đồ thị hàm số $y = f\left( x \right)$ khi một trong bốn điều kiện sau được thỏa mãn$\mathop {\lim }\limits_{x \to {b^ + }} {\mkern 1mu} y = + \infty ;\mathop {\lim }\limits_{x \to {b^ - }} {\mkern 1mu} y = + \infty ;\mathop {\lim }\limits_{x \to {b^ - }} {\mkern 1mu} y = + \infty ;\mathop {\lim }\limits_{x \to {b^ - }} {\mkern 1mu} y = - \infty $.
Ta có: $\mathop {\lim }\limits_{x \to + \infty } {\mkern 1mu} y = \mathop {\lim }\limits_{x \to + \infty } {\mkern 1mu} \dfrac{{2x + 2017}}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } {\mkern 1mu} \dfrac{{2 + \dfrac{{2017}}{x}}}{{1 + \dfrac{1}{x}}} = 2 \Rightarrow y = 2$ là TCN
$\mathop {\lim }\limits_{x \to - \infty } {\mkern 1mu} y = \mathop {\lim }\limits_{x \to - \infty } {\mkern 1mu} \dfrac{{2x + 2017}}{{ - x + 1}} = \mathop {\lim }\limits_{x \to + \infty } {\mkern 1mu} \dfrac{{2 + \dfrac{{2017}}{x}}}{{ - 1 + \dfrac{1}{x}}} = 2 \Rightarrow y = - 2$ là TCN.
Vậy đồ thị hàm số có $2$ tiệm cận ngang là các đường thẳng $y = - 2;y = 2$.
Hướng dẫn giải:
Sử dụng định nghĩa tiệm cận:
+) Đường thẳng $y = a$ là tiệm cận ngang của đồ thị hàm số $y = f\left( x \right)$ khi một trong hai điều kiện sau được thỏa mãn$\mathop {\lim }\limits_{x \to + \infty } {\mkern 1mu} y = a;\mathop {\lim }\limits_{x \to - \infty } {\mkern 1mu} y = a$.
+) Đường thẳng $x = b$ là tiệm cận đứng của đồ thị hàm số $y = f\left( x \right)$ khi một trong bốn điều kiện sau được thỏa mãn$\mathop {\lim }\limits_{x \to {b^ + }} {\mkern 1mu} y = + \infty ;\mathop {\lim }\limits_{x \to {b^ - }} {\mkern 1mu} y = + \infty ;\mathop {\lim }\limits_{x \to {b^ - }} {\mkern 1mu} y = + \infty ;\mathop {\lim }\limits_{x \to {b^ - }} {\mkern 1mu} y = - \infty $.
CÂU HỎI CÙNG CHỦ ĐỀ
Biết rằng hàm số \(f\left( x \right) = \sqrt x \ln x\) đạt giá trị lớn nhất trên đoạn \(\left[ {1;e} \right]\) tại \(x = {x_0}\). Mệnh đề nào sau đây là đúng?
Tìm giá trị $m$ để phương trình \({2^{\left| {x - 1} \right| + 1}} + {2^{\left| {x - 1} \right|}} + m = 0\) có nghiệm duy nhất
Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(A{A_1}\). Thể tích khối chóp \(M.BC{A_1}\) là:
Trong không gian \(Oxyz\), cho điểm \(A\left( {2; - 3;4} \right)\), đường thẳng \(d:\,\,\dfrac{{x - 1}}{2} = \dfrac{{y + 2}}{1} = \dfrac{z}{2}\) và mặt cầu \(\left( S \right):\,\,{\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 20\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng d thỏa mãn khoảng cách từ điểm \(A\) đến \(\left( P \right)\) lớn nhất. Mặt cầu \(\left( S \right)\) cắt \(\left( P \right)\) theo đường tròn có bán kính bằng :
Tìm tất cả các giá trị thực của $m$ để hàm số $y = {x^4} + 2\left( {{m^2} - 9} \right){x^2} + 5m + 2$ có cực đại, cực tiểu
Công thức tính thể tích khối nón có bán kính đáy \(r\), độ dài đường sinh \(l\) và chiều cao \(h\) là:
Cho hàm số $y = {x^4} - 2(m + 1){x^2} + m + 2$ có đồ thị $\left( C \right)$. Gọi $\Delta $ là tiếp tuyến với đồ thị $\left( C \right)$ tại điểm thuộc $\left( C \right)$ có hoành độ bằng $1$. Với giá trị nào của tham số $m$ thì $\Delta $ vuông góc với đường thẳng $d:y = - \dfrac{1}{4}x - 2016$
Cho hình nón có bán kính đáy bằng $4a$ và chiều cao bằng $3a.$ Diện tích toàn phần của hình nón bằng:
Cho hàm số \(y = f\left( x \right)\) xác định và có đạo hàm \(f'\left( x \right) = {x^2} + 2\) trên \(R\), chọn kết luận đúng:
Cho khối nón có độ dài đường sinh bằng \(2a\) và bán kính đáy bằng \(a\). Thể tích của khối nón đã cho bằng
Tập nghiệm của bất phương trình \({3^{\sqrt {2x} + 1}} - {3^{x + 1}} \le {x^2} - 2x\) là:
Cho hàm số \(y = f\left( x \right)\) có hai giá trị cực đại, cực tiểu thỏa mãn \({y_{CD}}.{y_{CT}} = 0\). Khi đó:
Cho hình chóp đều $n$ cạnh $(n \ge 3)$. Cho biết bán kính đường tròn ngoại tiếp đa giác đáy là $R$ và góc giữa mặt bên và mặt đáy bằng ${60^0}$ , thể tích khối chóp bằng $\dfrac{{3\sqrt 3 }}{4}{R^3}$ . Tìm $n$?
Điều kiện để biểu thức \({\log _2}\left( {3 - x} \right)\) xác định là:
Cho hình hộp \(ABCD.A'B'C'D'\) có thể tích bằng \(V\). Gọi \(M,\,\,N,\,\,P,\,\,Q,\,\,E,\,\,F\) lần lượt là tâm các hình bình hành \(ABCD,\,\,A'B'C'D',\,\,ABB'A',\,\,BCC'B',\,\,CDD'C',\,\,DAA'D'\). Thể tích khối đa diện có các đỉnh \(M,\,\,P,\,\,Q,\,\,E,\,\,F,\,\,N\) bằng: