Câu hỏi Đáp án 3 năm trước 120

Cho hàm số \(y = f\left( x \right)\) có hai giá trị cực đại, cực tiểu thỏa mãn \({y_{CD}}.{y_{CT}} = 0\). Khi đó:

A.

Đồ thị hàm số có 3 điểm chung với \(Ox\).


B.

Đồ thị hàm số có 2 điểm chung với \(Ox\).


Đáp án chính xác ✅

C.

Đồ thị hàm số có 1 điểm chung với \(Ox\).


D.

Đồ thị hàm số không có điểm chung với \(Ox\).


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: b

Vì \({y_{CD}}.{y_{CT}} = 0 \Leftrightarrow \left[ \begin{array}{l}{y_{CD}} = 0\\{y_{CT}} = 0\end{array} \right.\) hay một trong hai điểm cực trị của đồ thị hàm số nằm trên trục hoành.

Khi đó đồ thị hàm số chỉ có \(2\) giao điểm chung với \(Ox\)

Giải thích thêm:

HS thường nhầm lẫn rằng \({y_{CT}} < 0 < {y_{CD}}\) nên đường thẳng \(y = 0\) chỉ cắt đồ thị hàm số tại 1 điểm duy nhất và chọn ngay đáp án C mà không để ý đến các nhánh còn lại của đồ thị hàm số.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Biết rằng hàm số \(f\left( x \right) = \sqrt x \ln x\) đạt giá trị lớn nhất trên đoạn \(\left[ {1;e} \right]\) tại \(x = {x_0}\). Mệnh đề nào sau đây là đúng?

Xem lời giải » 3 năm trước 137
Câu 2: Trắc nghiệm

Tìm giá trị $m$ để phương trình \({2^{\left| {x - 1} \right| + 1}} + {2^{\left| {x - 1} \right|}} + m = 0\) có nghiệm duy nhất

Xem lời giải » 3 năm trước 133
Câu 3: Trắc nghiệm

Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(A{A_1}\). Thể tích khối chóp \(M.BC{A_1}\) là:

Xem lời giải » 3 năm trước 129
Câu 4: Trắc nghiệm

Trong không gian \(Oxyz\), cho điểm \(A\left( {2; - 3;4} \right)\), đường thẳng \(d:\,\,\dfrac{{x - 1}}{2} = \dfrac{{y + 2}}{1} = \dfrac{z}{2}\) và mặt cầu \(\left( S \right):\,\,{\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 20\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng d thỏa mãn khoảng cách từ điểm \(A\) đến \(\left( P \right)\) lớn nhất. Mặt cầu \(\left( S \right)\) cắt \(\left( P \right)\) theo đường tròn có bán kính bằng :

Xem lời giải » 3 năm trước 127
Câu 5: Trắc nghiệm

Công thức tính thể tích khối nón có bán kính đáy \(r\), độ dài đường sinh \(l\) và chiều cao \(h\) là:

Xem lời giải » 3 năm trước 125
Câu 6: Trắc nghiệm

Tìm tất cả các giá trị thực của $m$ để hàm số $y = {x^4} + 2\left( {{m^2} - 9} \right){x^2} + 5m + 2$ có cực đại, cực tiểu

Xem lời giải » 3 năm trước 124
Câu 7: Trắc nghiệm

Cho hàm số $y = {x^4} - 2(m + 1){x^2} + m + 2$ có đồ thị $\left( C \right)$. Gọi $\Delta $ là tiếp tuyến với đồ thị $\left( C \right)$ tại điểm thuộc $\left( C \right)$ có hoành độ bằng $1$. Với giá trị nào của tham số $m$ thì $\Delta $ vuông góc với đường thẳng $d:y =  - \dfrac{1}{4}x - 2016$

Xem lời giải » 3 năm trước 124
Câu 8: Trắc nghiệm

Cho hình nón có bán kính đáy bằng $4a$ và chiều cao bằng $3a.$ Diện tích toàn phần của hình nón bằng:

Xem lời giải » 3 năm trước 124
Câu 9: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) xác định và có đạo hàm \(f'\left( x \right) = {x^2} + 2\) trên \(R\), chọn kết luận đúng:

Xem lời giải » 3 năm trước 121
Câu 10: Trắc nghiệm

Cho khối nón có độ dài đường sinh bằng \(2a\) và bán kính đáy bằng \(a\). Thể tích của khối nón đã cho bằng

Xem lời giải » 3 năm trước 120
Câu 11: Trắc nghiệm

Tập nghiệm của bất phương trình \({3^{\sqrt {2x}  + 1}} - {3^{x + 1}} \le {x^2} - 2x\) là:

Xem lời giải » 3 năm trước 120
Câu 12: Trắc nghiệm

Điều kiện để biểu thức \({\log _2}\left( {3 - x} \right)\) xác định là:

Xem lời giải » 3 năm trước 119
Câu 13: Trắc nghiệm

Cho hình chóp đều $n$ cạnh $(n \ge 3)$. Cho biết bán kính đường tròn ngoại tiếp đa giác đáy là $R$ và góc giữa mặt bên và mặt đáy bằng ${60^0}$ , thể tích khối chóp bằng $\dfrac{{3\sqrt 3 }}{4}{R^3}$  . Tìm $n$?

Xem lời giải » 3 năm trước 118
Câu 14: Trắc nghiệm

Cho hình hộp \(ABCD.A'B'C'D'\) có thể tích bằng \(V\). Gọi \(M,\,\,N,\,\,P,\,\,Q,\,\,E,\,\,F\) lần lượt là tâm các hình bình hành \(ABCD,\,\,A'B'C'D',\,\,ABB'A',\,\,BCC'B',\,\,CDD'C',\,\,DAA'D'\). Thể tích khối đa diện có các đỉnh \(M,\,\,P,\,\,Q,\,\,E,\,\,F,\,\,N\) bằng:

Xem lời giải » 3 năm trước 117
Câu 15: Trắc nghiệm

Cho hàm số $y = {x^3} - 3{x^2} + 2x - 5$ có đồ thị $\left( C \right)$. Có bao nhiêu cặp điểm thuộc đồ thị $\left( C \right)$ mà tiếp tuyến với đồ thị tại chúng là hai đường thẳng song song?

Xem lời giải » 3 năm trước 115

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »