Cho hàm số $f\left( x \right)$ liên tục trên $R$ và $\int\limits_{ - 2}^4 {f\left( x \right)} dx{\rm{ = 2}}$ . Mệnh đề nào sau đây là sai?
A.
$\int\limits_{ - 1}^2 {f\left( {2x} \right)} d{\rm{x = 2}}$
B.
$\int\limits_{ - 3}^3 {f\left( {x + 1} \right)} d{\rm{x = 2}}$
C.
$\int\limits_{ - 1}^2 {f\left( {2x} \right)} d{\rm{x = 1}}$
D.
$\int\limits_0^6 {\dfrac{1}{2}f\left( {x - 2} \right)} d{\rm{x = 1}}$
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Dựa vào các đáp án, xét:
$\int\limits_{ - 1}^2 {f(2x)dx} $$ = \dfrac{1}{2}\int\limits_{ - 1}^2 {f(2x)d(2x)} $$= \dfrac{1}{2}\int\limits_{ - 2}^4 {f(x)dx } $$= 1$
$\begin{array}{l}\int\limits_{ - 3}^3 {f(x + 1)dx} = \int\limits_{ - 3}^3 {f(x + 1)d(x + 1)} \\ = \int\limits_{ - 2}^4 {f(x)dx = 2} \end{array}$
$\int\limits_0^6 {\dfrac{1}{2}f(x - 2)dx} = \int\limits_0^6 {\dfrac{1}{2}f(x - 2)d(x - 2)} $$ = \dfrac{1}{2}\int\limits_{ - 2}^4 {f(x)dx = 1}$
Do đó các đáp án B, C, D đều đúng, đáp án A sai.
Hướng dẫn giải:
Sử dụng phương pháp đổi biến số để tích tích phân ở các đáp án.
Dựa vào các đáp án, xét:
$\int\limits_{ - 1}^2 {f(2x)dx} $$ = \dfrac{1}{2}\int\limits_{ - 1}^2 {f(2x)d(2x)} $$= \dfrac{1}{2}\int\limits_{ - 2}^4 {f(x)dx } $$= 1$
$\begin{array}{l}\int\limits_{ - 3}^3 {f(x + 1)dx} = \int\limits_{ - 3}^3 {f(x + 1)d(x + 1)} \\ = \int\limits_{ - 2}^4 {f(x)dx = 2} \end{array}$
$\int\limits_0^6 {\dfrac{1}{2}f(x - 2)dx} = \int\limits_0^6 {\dfrac{1}{2}f(x - 2)d(x - 2)} $$ = \dfrac{1}{2}\int\limits_{ - 2}^4 {f(x)dx = 1}$
Do đó các đáp án B, C, D đều đúng, đáp án A sai.
Hướng dẫn giải:
Sử dụng phương pháp đổi biến số để tích tích phân ở các đáp án.
CÂU HỎI CÙNG CHỦ ĐỀ
Nếu đặt $\left\{ \begin{array}{l}u = \ln \left( {x + 2} \right)\\{\rm{d}}v = x\,{\rm{d}}x\end{array} \right.$ thì tích phân $I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} $ trở thành
Biết $F\left( x \right) = \left( {ax + b} \right).{e^x}$ là nguyên hàm của hàm số $y = \left( {2x + 3} \right).{e^x}$. Khi đó $b - a$ là
Tích phân \(\int\limits_{0}^{1}{{{e}^{-x}}}\,\text{d}x\) bằng
Cho \(A = \int {{x^5}\sqrt {1 + {x^2}} dx = a} {t^7} + b{t^5} + c{t^3} + C\) , với \(t = \sqrt {1 + {x^2}} \). Tính \(A = a - b - c\)
Tích phân \(\int\limits_{1}^{2}{{{(x+3)}^{2}}dx}\) bằng
Tìm nguyên hàm của hàm số $f\left( x \right) = {x^2}ln\left( {3x} \right)$
Cho \(I=\int{{{x}^{3}}\sqrt{{{x}^{2}}+5}dx}\), đặt \(u=\sqrt{{{x}^{2}}+5}\) khi đó viết \(I\) theo \(u\) và \(du\) ta được:
Biết rằng \(F\left( x \right) = {e^{2x}}\left( {a\cos 3x + b\sin 3x} \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {e^{2x}}\cos 3x\), trong đó a, b, c là các hằng số. Giá trị của tổng \(S = a + b\) thỏa mãn:
Cho \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\). Với \(C \ne 0\) là một hằng số bất kì, hàm nào sau đây cũng là một nguyên hàm của \(f\left( x \right)\)?
Cho $I = \int\limits_0^1 {\left( {2x - {m^2}} \right)dx} $. Có bao nhiêu giá trị nguyên dương m để $I + 3 \ge 0$?