Cho đồ thị hàm số $y = f\left( x \right)$ như hình vẽ dưới đây. Diện tích $S$ của hình phẳng (phần gạch chéo) được xác định bởi
A.
\(S = \int_{ - 2}^2 {f(x)dx} \)
B.
\(S = \int_1^{ - 2} {f(x)dx} + \int_1^2 {f(x)dx} \)
C.
\(S = \int_{ - 2}^1 {f(x)dx} + \int_1^2 {f(x)dx} \)
D.
\(S = \int_{ - 2}^1 {f(x)dx} - \int_1^2 {f(x)dx} \)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Nhận thấy phần đồ thị chia làm 2 phần, chú ý đến cận của từng phần.
Phần 1 có cận từ $ - 2$ đến $1$ nhưng trong \(\left( { - 1;2} \right)\), đồ thị hàm số nằm phía dưới trục hoành.
Phần 2 có cận từ 1 đến 2 và đồ thị hàm số nằm phía trên trục hoành.
Vậy \(S = \int_{-2}^{ 1} ({-f(x))dx} + \int_1^2 {f(x)dx} = \int_1^{ - 2} {f(x)dx} + \int_1^2 {f(x)dx} \)
Hướng dẫn giải:
- Bước 1: Giải phương trình \(f\left( x \right) = g\left( x \right)\) tìm nghiệm.
- Bước 2: Phá dấu giá trị tuyệt đối của biểu thức \(\left| {f\left( x \right) - g\left( x \right)} \right|\)
- Bước 3: Tính diện tích hình phẳng theo công thức tích phân \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
Giải thích thêm:
Một số em sẽ chọn nhầm đáp án A vì không nhớ kĩ công thức tính diện tích.
Nhận thấy phần đồ thị chia làm 2 phần, chú ý đến cận của từng phần.
Phần 1 có cận từ $ - 2$ đến $1$ nhưng trong \(\left( { - 1;2} \right)\), đồ thị hàm số nằm phía dưới trục hoành.
Phần 2 có cận từ 1 đến 2 và đồ thị hàm số nằm phía trên trục hoành.
Vậy \(S = \int_{-2}^{ 1} ({-f(x))dx} + \int_1^2 {f(x)dx} = \int_1^{ - 2} {f(x)dx} + \int_1^2 {f(x)dx} \)
Hướng dẫn giải:
- Bước 1: Giải phương trình \(f\left( x \right) = g\left( x \right)\) tìm nghiệm.
- Bước 2: Phá dấu giá trị tuyệt đối của biểu thức \(\left| {f\left( x \right) - g\left( x \right)} \right|\)
- Bước 3: Tính diện tích hình phẳng theo công thức tích phân \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
Giải thích thêm:
Một số em sẽ chọn nhầm đáp án A vì không nhớ kĩ công thức tính diện tích.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho vật thể \(V\) được giới hạn bởi hai mặt phẳng \(x = 0\) và \(x = - 2\), mặt phẳng vuông góc với trục \(Ox\) cắt \(V\) theo thiết diện \(S\left( x \right) = 2{x^2}\). Thể tích của \(V\) được tính bởi:
Cho hàm số \(y=f(x)={{x}^{3}}-3{{x}^{2}}-4x\,\,(C)\). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số (C) và trục hoành. Phát biểu nào sau đây đúng?
Giả sử rằng \(\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\tan xdx}}{{1 + {{\cos }^2}x}}} = m\ln \dfrac{3}{2}\). Tìm giá trị của m.
Gọi $F(x)$ là một nguyên hàm của hàm số \(f\left( x \right)=-\dfrac{1}{{{\cos }^{2}}x}\) thỏa mãn \(F\left( 0 \right)=1\). Tìm $F(x).$
Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt phẳng \(\left( P \right):y-2z+1=0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( P \right)\) ?
Hàm số $y = \sin x$ là một nguyên hàm của hàm số nào trong các hàm số sau?
Trong không gian \(Oxyz\) cho điểm \(M\left( {2;1;5} \right)\). Mặt phẳng \((P)\) đi qua điểm \(M\) và cắt các trục \(Ox,Oy,Oz\) lần lượt tại các điểm \(A,B,C\) sao cho \(M\) là trực tâm của tam giác \(ABC.\) Tính khoảng cách từ điểm \(I\left( {1;2;3} \right)\) đến mặt phẳng \((P)\).
Cho hàm số $f\left( x \right)$ thỏa mãn $f'\left( x \right){\left[ {f\left( x \right)} \right]^{2018}} = x.{e^x}{\mkern 1mu} {\mkern 1mu} \forall x \in R$ và $f\left( 1 \right) = 1$. Hỏi phương trình $f\left( x \right) = - \dfrac{1}{e}$ có bao nhiêu nghiệm?
Kết quả tích phân \(I = \int\limits_1^e {\dfrac{{\ln x}}{{x\left( {{{\ln }^2}x + 1} \right)}}dx} \) có dạng \(I = a\ln 2 + b\) với \(a,b \in Q\) . Khẳng định nào sau đây là đúng?
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\left[ a;b \right]\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=a,\,\,x=b\,\,\left( a<b \right)\) là:
Trong không gian với hệ tọa độ $Oxyz$, tìm tất cả các giá trị của $m$ để phương trình \({x^2} + {y^2} + {z^2} - 2x - 2y - 4z + m = 0\) là phương trình của một mặt cầu.
Trong không gian với hệ tọa độ Oxyz, cho ba vector $\vec a = \left( {2;3; - 5} \right);{\mkern 1mu} {\mkern 1mu} \vec b = \left( {0; - 3;4} \right);{\mkern 1mu} {\mkern 1mu} \vec c = \left( {1; - 2;3} \right)$. Tọa độ vector $\vec n = 3\vec a + 2\vec b - \vec c$ là:
Trong không gian với hệ tọa độ Oxyz cho hai điểm \(A(1;2;3),\,\,B( - 3; - 4; - 5)\). Tọa độ trung điểm I của đoạn thẳng AB là
Cô sin của góc hợp bởi hai véc tơ \(\overrightarrow {{u_1}} \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow {{u_2}} \left( {{x_2};{y_2};{z_2}} \right)\) là:
Thể tích vật thể nằm giữa hai mặt phẳng \(x=0\) và \(x=2\), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x \(\left( 0\le x\le 2 \right)\) là một nửa đường tròn đường kính \(\sqrt{5}{{x}^{2}}\) bằng :