Cho \(a\) là số thực tùy ý và \(b,c\) là các số thực dương khác \(1\). Hình vẽ bên là đồ thị của ba hàm số \(y = {\log _b}x;y = {\log _c}x;y = {x^a}\left( {x > 0} \right)\). Khẳng định nào sau đây đúng?

A.
\(a < c < b\)
B.
\(a < b < c\)
C.
\(a > b > c\)
D.
\(a > c > b\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b

Ta thấy hàm số \(y = {x^a}\) nghịch biến nên \(a < 0\) nên loại C, D.
Kẻ đường thẳng \(y = 1\) cắt hai đồ thị hàm số \(y = {\log _b}x;y = {\log _c}x\) tại hai điểm lần lượt có hoành độ \(x = b;x = c\). Quan sát đồ thị ta thấy \(b < c\).
Vậy \(a < b < c\).
Hướng dẫn giải:
Quan sát các đồ thị hàm số và nhận xét.
Giải thích thêm:
HS sẽ nhầm lẫn ở việc nhận dạng: Nhiều em sẽ nhận xét đồ thị hàm số \(y = {x^a}\) nằm ở phía trên cả hai đồ thị hàm số \(y = {\log _b}x;y = {\log _c}x\) nên kết luận ngay \(a > b,c\) nên chọn sai đáp án.

Ta thấy hàm số \(y = {x^a}\) nghịch biến nên \(a < 0\) nên loại C, D.
Kẻ đường thẳng \(y = 1\) cắt hai đồ thị hàm số \(y = {\log _b}x;y = {\log _c}x\) tại hai điểm lần lượt có hoành độ \(x = b;x = c\). Quan sát đồ thị ta thấy \(b < c\).
Vậy \(a < b < c\).
Hướng dẫn giải:
Quan sát các đồ thị hàm số và nhận xét.
Giải thích thêm:
HS sẽ nhầm lẫn ở việc nhận dạng: Nhiều em sẽ nhận xét đồ thị hàm số \(y = {x^a}\) nằm ở phía trên cả hai đồ thị hàm số \(y = {\log _b}x;y = {\log _c}x\) nên kết luận ngay \(a > b,c\) nên chọn sai đáp án.
CÂU HỎI CÙNG CHỦ ĐỀ
Nếu $n$ chẵn thì điều kiện để $\sqrt[n]{b}$ có nghĩa là:
Kết luận nào đúng về số thực \(a\) nếu \({\left( {\dfrac{1}{a}} \right)^{ - 0,2}} < {a^2}\)
Cho hàm số \(y = {x^\alpha }\). Nếu \(\alpha = 1\) thì đồ thị hàm số là:
Đơn giản biểu thức $P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right)\,\,\,\,(a,b > 0)$ ta được:
Nếu $\log_a b{\rm{ }} = {\rm{ }}p$ thì $\log_a{a^2}{b^4}$ bằng:
Cho ${\left( {\sqrt 2 - 1} \right)^m} < {\left( {\sqrt 2 - 1} \right)^n}$. Khẳng định nào dưới đây đúng?
Với điều kiện các biểu thức đều có nghĩa, đẳng thức nào dưới đây không đúng?
Công thức nào sau đây là công thức tăng trưởng mũ?
Một khu rừng ở tỉnh Hà Giang có trữ lượng gỗ là $3.10^5(m^3).$ Biết tốc độ sinh trưởng của các ở khu rừng đó là $5\%$ mỗi năm. Hỏi sau $5$ năm, khu rừng đó sẽ có bao nhiêu mét khối gỗ?