Biết \(a,\,\,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\), đồng thời \(x,\,\,y,\,\,z\) là các số thực dương thỏa mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1\). Giá trị của \(\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}\) thuộc khoảng:
A.
\(\left( {1;2} \right)\)
B.
\(\left( {2;3} \right)\)
C.
\(\left( {3;4} \right)\)
D.
\(\left( {4;5} \right)\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Theo bài ra ta có: \(\left\{ \begin{array}{l}\log \left( {x + y} \right) = z\\\log \left( {{x^2} + {y^2}} \right) = z + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = {10^z}\\{x^2} + {y^2} = {10.10^z}\end{array} \right. \Leftrightarrow {x^2} + {y^2} = 10\left( {x + y} \right)\).
Khi đó ta có:
\(\begin{array}{l}\,\,\,\,\,{x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\\ \Leftrightarrow \left( {x + y} \right)\left( {{x^2} + {y^2} - xy} \right) = a.{\left( {{{10}^z}} \right)^3} + b.{\left( {{{10}^z}} \right)^2}\\ \Leftrightarrow \left( {x + y} \right)\left( {{x^2} + {y^2} - xy} \right) = a.{\left( {x + y} \right)^3} + b.{\left( {x + y} \right)^2}\\ \Leftrightarrow {x^2} + {y^2} - xy = a{\left( {x + y} \right)^2} + b\left( {x + y} \right)\\ \Leftrightarrow {x^2} + {y^2} - xy = a\left( {{x^2} + 2xy + {y^2}} \right) + b.\dfrac{{{x^2} + {y^2}}}{{10}}\\ \Leftrightarrow {x^2} + {y^2} - xy = \left( {a + \dfrac{b}{{10}}} \right)\left( {{x^2} + {y^2}} \right) + 2a.xy\end{array}\)
Đồng nhất hệ số ta có \(\left\{ \begin{array}{l}1 = a + \dfrac{b}{{10}}\\ - 1 = 2a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \dfrac{1}{2}\\b = 15\end{array} \right.\).
Vậy \(\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} = 4 + \dfrac{1}{{225}} = \dfrac{{901}}{{225}} \approx 4,004 \in \left( {4;5} \right)\).
Theo bài ra ta có: \(\left\{ \begin{array}{l}\log \left( {x + y} \right) = z\\\log \left( {{x^2} + {y^2}} \right) = z + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = {10^z}\\{x^2} + {y^2} = {10.10^z}\end{array} \right. \Leftrightarrow {x^2} + {y^2} = 10\left( {x + y} \right)\).
Khi đó ta có:
\(\begin{array}{l}\,\,\,\,\,{x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\\ \Leftrightarrow \left( {x + y} \right)\left( {{x^2} + {y^2} - xy} \right) = a.{\left( {{{10}^z}} \right)^3} + b.{\left( {{{10}^z}} \right)^2}\\ \Leftrightarrow \left( {x + y} \right)\left( {{x^2} + {y^2} - xy} \right) = a.{\left( {x + y} \right)^3} + b.{\left( {x + y} \right)^2}\\ \Leftrightarrow {x^2} + {y^2} - xy = a{\left( {x + y} \right)^2} + b\left( {x + y} \right)\\ \Leftrightarrow {x^2} + {y^2} - xy = a\left( {{x^2} + 2xy + {y^2}} \right) + b.\dfrac{{{x^2} + {y^2}}}{{10}}\\ \Leftrightarrow {x^2} + {y^2} - xy = \left( {a + \dfrac{b}{{10}}} \right)\left( {{x^2} + {y^2}} \right) + 2a.xy\end{array}\)
Đồng nhất hệ số ta có \(\left\{ \begin{array}{l}1 = a + \dfrac{b}{{10}}\\ - 1 = 2a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \dfrac{1}{2}\\b = 15\end{array} \right.\).
Vậy \(\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} = 4 + \dfrac{1}{{225}} = \dfrac{{901}}{{225}} \approx 4,004 \in \left( {4;5} \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho các số \(a,\ b,\ c\) và \(a,\ c\ne 1\). Khẳng định nào sau đây đúng?
Cho $a,{\rm{ }}b,{\rm{ }}c$ là các số thực dương thỏa mãn ${a^2} = bc.$ Tính $S = 2\ln a - \ln b - \ln c$.
Biết rằng phương trình $2\log \left( {x + 2} \right) + \log 4 = \log x + 4\log 3$ có hai nghiệm phân biệt \({x_1},{\rm{ }}{x_2}\,\,\left( {{x_1} < {x_2}} \right)\). Tính \(P = \dfrac{{{x_1}}}{{{x_2}}}.\)
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng
Cho hai số thực dương $x, y$ thỏa mãn \({2^x} + {2^y} = 4\). Tìm giá trị lớn nhất \({P_{\max }}\) của biểu thức\(P = (2{x^2} + y)(2{y^2} + x) + 9xy\).
Đặt ${\log _2}3 = a;{\log _2}5 = b$. Hãy biểu diễn $P = {\log _3}240$ theo $a$ và $b$.
Gọi $(C)$ là đồ thị hàm số \(y = \log x\). Tìm khẳng định đúng?
Cho \({\left( {\sqrt 5 - 1} \right)^m} < {\left( {\sqrt 5 - 1} \right)^n}\). Khẳng định nào dưới đây đúng?
Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \(4.{\left( {{{\log }_2}\sqrt x } \right)^2} + {\log _2}x + m \ge 0\) nghiệm đúng với mọi giá trị \(x \in \left[ {1;64} \right]\).
Bất phương trình \({\left( {\sqrt 2 } \right)^{{x^2} - 2x}} \le {\left( {\sqrt 2 } \right)^3}\) có tập nghiệm là:
Thầy C gửi \(5\) triệu đồng vào ngân hàng với lãi suất \(0,7\% \)/tháng. Chưa đầy một năm thì lãi suất tăng lên thành \(1,15\% \)/tháng. Tiếp theo, sáu tháng sau lãi suất chỉ còn \(0,9\% \)/tháng. Thầy C tiếp tục gửi thêm một số tháng nữa rồi rút cả vỗn lẫn lãi được 5787710,707 đồng. Hỏi thầy C đã gửi tổng thời gian bao nhiêu tháng?
Hàm số \(y = {\log _a}x\left( {0 < a \ne 1} \right)\) xác định trên:
Trong các hàm số sau đây, hàm số nào đồng biến trên các khoảng xác định?
Nếu ${\left( {a - 2} \right)^{ - \dfrac{1}{4}}} \le {\left( {a - 2} \right)^{ - \dfrac{1}{3}}}$ thì khẳng định đúng là:
Cho hàm số $y = x.{e^{ - x}}$. Chọn kết luận đúng: