Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Đặt \({{x}^{2}}+9=t\Rightarrow 2xdx=dt\Rightarrow xdx=\frac{1}{2}dt\).
Đổi cận:
$\begin{array}{l}
x = 0 \Rightarrow t = 9\\
x = 4 \Rightarrow t = 25
\end{array}$
Khi đó, ta có: \(I=\int\limits_{0}^{4}{x\ln ({{x}^{2}}+9)dx=}\frac{1}{2}\int\limits_{9}^{25}{\ln tdt}=\frac{1}{2}\left[ \left. t.\ln \left| t \right| \right|_{9}^{25}-\int_{9}^{25}{td(\ln t)} \right]=\frac{1}{2}\left[ t.\ln \left. t \right|_{9}^{25}-\int_{9}^{25}{t.\frac{1}{t}dt} \right]\)
\(=\frac{1}{2}\left[ t.\ln \left. t \right|_{9}^{25}-\int_{9}^{25}{dt} \right]=\frac{1}{2}\left[ t.\ln \left. t \right|_{9}^{25}-\left. t \right|_{9}^{25} \right]=\frac{1}{2}\left[ \left( 25\ln 25-9\ln 9 \right)-(25-9) \right]=25\ln 5-9\ln 3-8\)
Suy ra, \(a=25,\,b=-9,\,c=-8\Rightarrow T=a+b+c=8\)
Hướng dẫn giải:
Sử dụng kết hợp các phương pháp đổi biến và từng phần để tính tích phân.
Đặt \({{x}^{2}}+9=t\Rightarrow 2xdx=dt\Rightarrow xdx=\frac{1}{2}dt\).
Đổi cận:
$\begin{array}{l}
x = 0 \Rightarrow t = 9\\
x = 4 \Rightarrow t = 25
\end{array}$
Khi đó, ta có: \(I=\int\limits_{0}^{4}{x\ln ({{x}^{2}}+9)dx=}\frac{1}{2}\int\limits_{9}^{25}{\ln tdt}=\frac{1}{2}\left[ \left. t.\ln \left| t \right| \right|_{9}^{25}-\int_{9}^{25}{td(\ln t)} \right]=\frac{1}{2}\left[ t.\ln \left. t \right|_{9}^{25}-\int_{9}^{25}{t.\frac{1}{t}dt} \right]\)
\(=\frac{1}{2}\left[ t.\ln \left. t \right|_{9}^{25}-\int_{9}^{25}{dt} \right]=\frac{1}{2}\left[ t.\ln \left. t \right|_{9}^{25}-\left. t \right|_{9}^{25} \right]=\frac{1}{2}\left[ \left( 25\ln 25-9\ln 9 \right)-(25-9) \right]=25\ln 5-9\ln 3-8\)
Suy ra, \(a=25,\,b=-9,\,c=-8\Rightarrow T=a+b+c=8\)
Hướng dẫn giải:
Sử dụng kết hợp các phương pháp đổi biến và từng phần để tính tích phân.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Chọn mệnh đề sai?
Tích phân \(\int\limits_{1}^{2}{{{(x+3)}^{2}}dx}\) bằng
Cho hàm số \(y = f(x)\)thỏa mãn hệ thức \(\int {f\left( x \right)\sin xdx} = - f(x).\cos x + \int {{\pi ^x}\cos xdx}. \) Hỏi \(y = f\left( x \right)\) là hàm số nào trong các hàm số sau:
Giả sử hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) và \(k\) là một số thực trên \(R\). Cho các công thức:
a) \(\int\limits_a^a {f\left( x \right)dx} = 0\)
b) \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_b^a {f\left( x \right)dx} \)
c) \(\int\limits_a^b {kf\left( x \right)dx} = k\int\limits_a^b {f\left( x \right)dx} \)
Số công thức sai là:
Cho \(\int\limits_{1}^{2}{\frac{\text{d}x}{{{x}^{5}}+{{x}^{3}}}}=a.\ln 5+b.\ln 2+c\) với \(a,\,\,b,\,\,c\) là các số hữu tỉ. Giá trị của \(a+2b+4c\) bằng
Trong các tích phân sau, tích phân nào có giá trị bằng \(2\)?
Họ nguyên hàm của hàm số $f\left( x \right) = {x^2}\sqrt {4 + {x^3}} $ là:
Cho hai hàm số $y = f\left( x \right),\,\,y = g\left( x \right)$ là các hàm liên tục trên đoạn $\left[ {0;2} \right],$ có $\int\limits_0^1 {f\left( x \right){\rm{d}}x} = 4,\,\,\int\limits_0^2 {g\left( x \right){\rm{d}}x} = - \,2$ và $\int\limits_1^2 {g\left( t \right){\rm{d}}t} = 1.$ Tính $I = \int\limits_0^1 {\left[ {2f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x} .$
Hàm số $y = \sin x$ là một nguyên hàm của hàm số nào trong các hàm số sau?