Bà Hoa gửi $100$ triệu vào tài khoản định kì tính lãi suất là $8\% $ một năm. Sau 5 năm, bà rút toàn bộ số tiền và dùng một nửa để sửa nhà, còn một nửa tiền bà lại đem gửi ngân hàng trong 5 năm với cùng lãi suất. Tính số tiền lãi thu được sau 10 năm.
A.
$81,412$ triệu
B.
$115,892$ triệu
C.
$119$ triệu
D.
$78$ triệu
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Số tiền bà Hoa rút sau 5 năm đầu là: $100{\left( {1 + 8\% } \right)^5} = 146,932$ triệu.
Số tiền lãi lần 1 là: $146,932 - 100 = 46,932$ triệu.
Số tiền bà gửi tiếp vào ngân hàng là: $146,932:2 = 73,466$ triệu
Số tiền và có sau 5 năm là: $73,466{\left( {1 + 8\% } \right)^5} = 107,946$ triệu.
Số tiền lãi lần 2 là: $107,946 - 73,466 = 34,480$ triệu.
Tổng số tiền lãi sau 2 lần là: $46,932 + 34,480 = 81,412$ triệu.
Hướng dẫn giải:
- Tính số tiền bà Hoa rút ra sau 5 năm theo công thức $T = A{\left( {1 + r} \right)^N}$.
- Tính số tiền lãi lần đầu.
- Tính số tiền bà đem gửi lần 2.
- Tính số tiền sau 5 năm lần 2 theo công thức: $T = A{\left( {1 + r} \right)^N}$
- Tính số tiền lãi lần 2 và suy ra đáp số.
Số tiền bà Hoa rút sau 5 năm đầu là: $100{\left( {1 + 8\% } \right)^5} = 146,932$ triệu.
Số tiền lãi lần 1 là: $146,932 - 100 = 46,932$ triệu.
Số tiền bà gửi tiếp vào ngân hàng là: $146,932:2 = 73,466$ triệu
Số tiền và có sau 5 năm là: $73,466{\left( {1 + 8\% } \right)^5} = 107,946$ triệu.
Số tiền lãi lần 2 là: $107,946 - 73,466 = 34,480$ triệu.
Tổng số tiền lãi sau 2 lần là: $46,932 + 34,480 = 81,412$ triệu.
Hướng dẫn giải:
- Tính số tiền bà Hoa rút ra sau 5 năm theo công thức $T = A{\left( {1 + r} \right)^N}$.
- Tính số tiền lãi lần đầu.
- Tính số tiền bà đem gửi lần 2.
- Tính số tiền sau 5 năm lần 2 theo công thức: $T = A{\left( {1 + r} \right)^N}$
- Tính số tiền lãi lần 2 và suy ra đáp số.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là sai?
Cho hàm số $y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx.$ Tìm $m$ để đồ thị hàm số có hai điểm cực trị là $A, B$ sao cho đường thẳng $AB$ vuông góc với $d:\,x - y - 9 = 0$
Cho $n \in Z, n>0$, với điều kiện nào của $a$ thì đẳng thức sau xảy ra: ${a^{ - n}} = \dfrac{1}{{{a^n}}}$?
Với điều kiện các logarit đều có nghĩa, chọn mệnh đề đúng:
Nếu $\log_a b{\rm{ }} = {\rm{ }}p$ thì $\log_a{a^2}{b^4}$ bằng:
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?
Cho hai đồ thị hàm số $y = {x^3} + 2{x^2} - x + 1$ và đồ thị hàm số $y = {x^2} - x + 3$ có tất cả bao nhiêu điểm chung?
Chọn kết luận đúng: Đồ thị hàm số bậc bốn trùng phương
Biết đồ thị các hàm số $y = {x^3} + \dfrac{5}{4}x - 2$ và $y = {x^2} + x - 2$ tiếp xúc nhau tại điểm $M({x_0}\,;\,{y_0})$. Tìm ${x_0}.$
Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\) có 5 điểm cực trị?
Cho các phát biểu sau:
(I). Nếu \(C = \sqrt {AB} \) thì \(2\ln C = \ln A + \ln B\) với $A, B$ là các biểu thức luôn nhận giá trị dương.
(II). \(\left( {a - 1} \right){\log _a}x \ge 0 \Leftrightarrow x \ge 1\) với \(a > 0,a \ne 1\)
(III). \({m^{{{\log }_a}m}} = {n^{{{\log }_a}n}},\) với \(m,n > 0\) và \(a > 0,a \ne 1\)
(IV).\(\mathop {\lim }\limits_{x \to + \infty } {\log _{\frac{1}{2}}}x = - \infty \)
Số phát biểu đúng là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh B, \(AB = 4,SA = SB = SC = 12\). Gọi M, N, E lần lượt là trung điểm AC, BC, AB. Trên cạnh SB lấy điểm F sao cho \(\dfrac{{BF}}{{BS}} = \dfrac{2}{3}\). Thể tích khối tứ diện \(MNEF\) bằng
