Gọi \({z_1}\) và \({z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 10 = 0\). Tính giá trị biểu thức \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\)
lượt xem
Cho hai số phức ${z_1} = 3 + 4i,\,\,{z_2} = 4 - 3i$. Mệnh đề nào sau đây là đúng?
lượt xem
Biết rằng có duy nhất một cặp số thực $\left( {x;y} \right)$ thỏa mãn $\left( {x + y} \right) + \left( {x - y} \right)i = 5 + 3i$. Tính \(S = x + y.\)
lượt xem
Cho số phức $z$ thỏa mãn $\left( {2-i} \right)z = 7-i$ . Hỏi điểm biểu diễn của $z$ là điểm nào trong các điểm $M,N,P,Q$ ở hình dưới.

lượt xem
Gọi \(A\) là điểm biểu diễn của số phức \(z = 3 + 2i\) và \(B\) là điểm biểu diễn của số phức \(z' = 2 + 3i\). Mệnh đề nào sau đây là đúng?
lượt xem
Với hai số phức bất kì ${z_1},{z_2}$ , khẳng định nào sau đây đúng:
lượt xem
Cho số phức $z = 3 + 2i.$ Tìm phần thực và phần ảo của số phức $\bar z.$
lượt xem
Tìm điểm $M$ biểu diễn số phức \(z = i - 2\)
lượt xem
Tập hợp các điểm biểu diễn hình học của số phức $z$ là đường thẳng $\Delta $ như hình vẽ. Tìm giá trị nhỏ nhất của \(\left| z \right|\).
lượt xem
Nghiệm của phương trình: ${z^2} + (1 - i)z - 18 + 13i = 0$ là:
lượt xem
Cho hai số phức ${z_1} = 1 + i$ và ${z_2} = 2 - 3i$. Tính môđun của số phức ${z_1} - {z_2}.$
lượt xem
Tìm phần ảo \(b\) của số phức $w = \dfrac{1}{{2i}}\left( {z - \bar z} \right)$ với $z = 5 - 3i$.
lượt xem
Chọn mệnh đề đúng:
lượt xem
Phương trình: ${z^2} + az + b = 0$ \(\left( {a,b \in \mathbb{R}} \right)\) có một nghiệm phức là $z = 1 + 2i$ . Tổng $2$ số $a$ và $b$ bằng
lượt xem
Căn bậc hai của số \(a = - 3\) là:
lượt xem
Xét số phức \(z\) thỏa mãn \(\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(\left| {z - 1 + i} \right|\). Tính \(P = m + M\).
lượt xem
Trong các số phức z thỏa mãn \(\left| {z + 3 + 4i} \right| = 2\) , gọi \({z_0}\) là số phức có mô đun nhỏ nhất. Khi đó:
lượt xem
Tìm giá trị nhỏ nhất của \(|z|\), biết rằng \(z\) thỏa mãn điều kiện \(|\dfrac{{4 + 2i}}{{1 - i}}z - 1| = 1\).
lượt xem
Tìm tập hợp các điểm trên mặt phẳng tọa độ biểu diễn các số phức $z$ thỏa mãn điều kiện \(2|z - 1 - 2i| = |3i + 1 - 2\bar z|\).
lượt xem
Tập điểm biểu diễn số phức $z$ thỏa mãn ${\left| z \right|^2} = {z^2}$ là:
lượt xem
Gọi ${z_1}$, ${z_2}$ là hai nghiệm phức của phương trình ${z^2} - 2z + 2 = 0$. Tính giá trị biểu thức $P = z_1^{2016} + z_2^{2016}.$
lượt xem
Cho số phức \({\rm{w}}\)và hai số thực \(a,b\). Biết \({z_1} = {\rm{w}} + 2i\) và \({z_2} = 2w - 3\) là 2 nghiệm phức của phương trình \({z^2} + az + b = 0\). Tính \(T = \left| {{z_1}} \right| + \left| {{z_2}} \right|\).
lượt xem
Kí hiệu \({z_1},{\rm{ }}{z_2},\,{\rm{ }}{z_3}\) và \({z_4}\) là bốn nghiệm phức của phương trình $6{z^4} + 19{z^2} + 15 = 0.$ Tính tổng \(T = \dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} + \dfrac{1}{{{z_4}}}.\)
lượt xem
Tính môđun của số phức $z$ biết $\overline z = \left( {4 - 3i} \right)\left( {1 + i} \right)$.
lượt xem
Thu gọn số phức $w = {i^5} + {i^6} + {i^7} + ... + {i^{18}}$ có dạng \(a + bi\). Tính tổng \(S = a + b.\)
lượt xem
Tìm số phức có phần thực bằng $12$ và mô đun bằng $13$:
lượt xem
lượt xem
lượt xem
Cho số phức $z = 1 + \sqrt {3}i $. Khi đó
lượt xem
Cho số phức $z = 3 + 2i.$ Tìm phần thực và phần ảo của số phức $\bar z.$
lượt xem
Số phức $z$ thỏa mãn $\left| z \right| + z = 0$. Khi đó:
lượt xem
Cho \({z_1},{z_2}\) là hai nghiệm của phương trình \({z^2} + 2iz + i = 0\). Chọn mệnh đề đúng:
lượt xem
Tìm các giá trị của tham số thực \(x,\,{\rm{ }}y\) để số phức \(z = {\left( {x + iy} \right)^2} - 2\left( {x + iy} \right) + 5\) là số thực.
lượt xem
Gọi \(M\) là điểm biểu diễn của số phức \(z\), biết tập hợp các điểm \(M\) là phần tô đậm ở hình bên (kể cả biên). Mệnh đề nào sau đây đúng ?
lượt xem
Cho số phức $z$ thỏa mãn $\dfrac{{1 - i}}{{z + 1}} = 1 + i$. Điểm \(M\) biểu diễn của số phức $w = {z^3} + 1$ trên mặt phẳng tọa độ có tọa độ là:
lượt xem
Cho phương trình \(2{z^2} - 3iz + i = 0\). Chọn mệnh đề đúng:
lượt xem
Kí hiệu \(a\), \(b\) lần lượt là phần thực và phần ảo của số phức \(z = i\left( {1 - i} \right).\) Khẳng định nào sau đây là đúng?
lượt xem
Gọi \({z_1}\) và \({z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 10 = 0\). Tính giá trị biểu thức \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\)
lượt xem
Cho số phức $z = 2 + 5i$. Tìm số phức \(w = iz + \overline z \).
lượt xem
Giả sử ${z_1};{z_2}$ là hai nghiệm phức của phương trình: ${z^2} - 2z + 5 = 0$ và $A,B$ là các điểm biểu diễn của ${z_1};{z_2}$. Tọa độ trung điểm của đoạn thẳng $AB$ là
lượt xem
Xét số phức \(z\) thỏa mãn \(\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(\left| {z - 1 + i} \right|\). Tính \(P = m + M\).
lượt xem
Trong số các số phức $z$ thỏa mãn điều kiện \(\left| {z - 4 + 3i} \right| = 3\), gọi ${z_0}$ là số phức có mô đun lớn nhất. Khi đó \(\left| {{z_0}} \right|\) là
lượt xem
Tìm giá trị lớn nhất của \(|z|\), biết rằng \(z\) thỏa mãn điều kiện \(|\dfrac{{ - 2 - 3i}}{{3 - 2i}}z + 1| = 1\).
lượt xem
Hỏi có bao nhiêu số phức thỏa mãn đồng thời các điều kiện $\left| {z - i} \right| = 5$ và \({z^2}\) là số thuần ảo?
lượt xem
Cho ba điểm $A,B,C$ lần lượt biểu diễn các số phức sau \({z_1} = 1 + i;\,{z_2} = {z_1}^2;\,{z_3} = m - i\). Tìm các giá trị thực của $m$ sao cho tam giác $ABC$ vuông tại $B$.
lượt xem
Gọi \({z_1};{z_2};{z_3};{z_4}\) là bốn nghiệm phức của phương trình \(2{z^4} - 3{z^2} - 2 = 0\). Tổng \(T = |{z_1}{|^2} + |{z_2}{|^2} + |{z_3}{|^2} + |{z_4}{|^2}\) bằng:
lượt xem
Kí hiệu \({z_1},{z_2}\) là hai nghiệm của phương trình \({z^2} + z + 1 = 0\). Tính \(P = z_1^2 + z_2^2 + {z_1}{z_2}.\)
lượt xem
Kí hiệu ${z_1},{z_2},{z_3},{z_4}$ là bốn nghiệm phức của phương trình ${z^4} - {z^2} - 12 = 0$. Tính tổng $T = \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_3}} \right| + \left| {{z_4}} \right|$.
lượt xem
Cho số phức \(z = a + bi(ab \ne 0)\). Tìm phần thực của số phức \({\rm{w}} = \dfrac{1}{{{z^2}}}\).
lượt xem
Tính môđun của số phức $z$ biết $\overline z = \left( {4 - 3i} \right)\left( {1 + i} \right)$.
lượt xem