Đề thi giữa HK1 môn Toán 12 năm 2021-2022 - Trường THPT Nguyễn Trung Trực
Đề thi giữa HK1 môn Toán 12 năm 2021-2022 - Trường THPT Nguyễn Trung Trực
-
Hocon247
-
40 câu hỏi
-
60 phút
-
92 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Đồ thị hàm số \(y = {x^3} - 3{{\rm{x}}^2} + 2\) đi qua điểm nào?
Thay tọa độ các điểm vào phương trình \(y = f\left( x \right)\)
Có \({1^3} - {3.1^2} + 2 = 0\)\( \Rightarrow P\left( {1;0} \right)\) thuộc đồ thị hàm số \(y = f\left( x \right)\).
Hình chóp tứ giác có mấy mặt?
Hình chóp n-giác có \(n + 1\) mặt.
Hình chóp tứ giác có 5 mặt
Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;3} \right]\) và có bảng biến thiên như hình bên dưới.
Mệnh đề nào sau đây là mệnh đề đúng?
Hàm f đổi dấu từ dương sang âm qua \({x_0}\) thì đạt cực đại tại \({x_0}\)
Hàm f đổi dấu từ âm sang dương qua \({x_0}\) thì đạt cực tiểu tại \({x_0}\)
Vậy hàm f đổi dấu từ dương sang âm qua \(x = 0\) thì đạt cực đại tại \(x = 0\).
Chọn B
Thể tích V của khối chóp có diện tích đáy bằng B và chiều cao bằng h, được tính theo công thức
Thể tích hình chóp có diện tích đáy B, chiều cao h là: \(V = \dfrac{1}{3}B.h\)
Khối lăng trụ có diện tích đáy bằng 4, chiều cao bằng 3 có thể tích bằng
Thể tích hình chóp có diện tích đáy bằng 4, chiều cao bằng 3 là: \(V = 4.3 = 12\)
Đường tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) có phương trình là
\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{x + 1}}{{x - 2}} = + \infty \)
Tiệm cận đứng của hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) là \(x = 2\)
Đường tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) có phương trình là
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{x + 1}}{{x - 2}} = 1\)\( \Rightarrow y = 1\) là đường tiệm cận ngang.
Khối lập phương cạnh bằng 2 có thể tích bằng
Thể tích hình lập phương cạnh a: \(V = {a^3}\)
Thể tích lập phương cạnh 2 là: \(V = 8\)
Hàm số \(y = \dfrac{{3 - 2x}}{{x + 7}}\) nghịch biến trên khoảng nào sau đây?
Tập xác định: \(D = \mathbb{R}{\rm{\backslash }}\left\{ { - 7} \right\}\).
\(\begin{array}{l}y' = \dfrac{{ - 2\left( {x + 7} \right) - \left( {3 - 2x} \right)}}{{{{\left( {x + 7} \right)}^2}}}\\ = \dfrac{{ - 17}}{{{{\left( {x + 7} \right)}^2}}} < 0\forall x \in D\end{array}\)
\( \Rightarrow \)Hàm số nghịch biến trên \(\left( { - \infty ; - 7} \right)\) và \(\left( { - 7; + \infty } \right)\)
Hàm số \({x^4} + 2{x^2} - 3\) có bao nhiêu điểm cực trị?
\(y' = 4{x^3} + 4x = 4x\left( {{x^2} + 1} \right)\)
\(y' = 0 \Leftrightarrow x = 0\)
Bảng biến thiên:
\( \Rightarrow \) Hàm số có 1 điểm cực trị.
Cho hàm số \(y = f\left( x \right) = {x^2} - 2x + 3\). Mệnh đề nào sau đây đúng?
Ta có \(y' = 2x - 2\)
\(y' = 0 \Leftrightarrow x = 1 \in \left[ {0;3} \right]\)
\(f\left( 0 \right) = 3,f\left( 3 \right) = 6\)
\(\mathop {\min }\limits_{\left[ {0;3} \right]} y = f\left( 1 \right) = 2\)
Đường cong trong hình vẽ bên dưới là đồ thị của hàm số nào?
Đồ thị trên là đồ thị của hàm số trùng phương.
\(\mathop {\lim }\limits_{x \to + \infty } y = + \infty \Rightarrow a > 0\). \( \Rightarrow \)C, D sai.
Hàm số có các điểm cực trị là: \(x = 0;x = \pm 1\). \( \Rightarrow \)A sai.
Đồ thị trong hình vẽ dưới đây là đồ thị của hàm số nào?
.jpg)
Dựa vào đồ thị hàm số ta thấy đồ thị hàm số có TCĐ là \(x = 1\) \( \Rightarrow \) loại đáp án A.
Đồ thị hàm số đi qua điểm \(\left( { - 1;{\mkern 1mu} {\mkern 1mu} 0} \right)\) và \(\left( {0; - 1} \right)\) \( \Rightarrow \) chọn đáp án B.
Chọn B.
Số tiếp tuyến của đồ thị hàm số \(y = {x^4} - 2{x^2} - 3\) song song với trục hoành là :
Phương trình trục hoành: \(y = 0\).
Ta có \(y' = 4{x^3} - 4x \Rightarrow \) Hệ số góc của tiếp tuyến tại điểm có hoành độ \(x = {x_0}\) là \(y'\left( {{x_0}} \right) = 4x_0^3 - 4{x_0}\).
Tiếp tuyến // Ox \( \Rightarrow y'\left( {{x_0}} \right) = 0 \Leftrightarrow 4x_0^3 - 4{x_0} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x_0} = 0}\\{{x_0} = {\rm{\;}} \pm 1}\end{array}} \right.\).
Khi \(x = \pm 1\) ta tìm được hai tiếp tuyến trùng nhau là \(y = - 3\)
Vậy có hai tiếp tuyến song song với trục hoành.
Chọn C.
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
.jpg)
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Dựa vào BBT ta thấy hàm số nghịch biến trên các khoảng \(\left( { - \infty ;{\mkern 1mu} {\mkern 1mu} - 2} \right)\) và \(\left( {0;{\mkern 1mu} {\mkern 1mu} 2} \right).\)
Chọn C.
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ
.jpg)
Hàm số đồng biến trên khoảng:
Dựa vào hình vẽ ta nhận thấy hàm số đồng biến trên \(\left( { - 2; - 1} \right)\).
Chọn A.
Tổng số mặt, số cạnh và số đỉnh của một hình lập phương là:
Hình lập phương có \(6\) mặt, \(8\) đỉnh và 12 cạnh nên tổng số cạnh, mặt đỉnh là: \(6 + 8 + 12 = 26\).
Chọn A.
Cho hình hộp đứng ABCD.A’B’C’D’ có đáy ABCD là một hình thoi cạnh a, \(\widehat {ABC} = {120^0}\); \(AA' = 4a\) Tính khoảng cách giữa hai đường thẳng A’C và BB’?
Ta có
\(\begin{array}{*{20}{l}}{\rm{\;}}&{BB'//CC' \Rightarrow BB'//\left( {ACC'} \right) \supset AC'}\\{\rm{\;}}&{ \Rightarrow d\left( {AC';BB'} \right) = d\left( {BB';\left( {ACC'} \right)} \right) = d\left( {B';\left( {ACC'} \right)} \right)}\end{array}\)
Gọi \(O = A'C' \cap B'D'\) ta có :
\(\left\{ {\begin{array}{*{20}{l}}{\rm{\;}}&{B'O \bot A'C'}\\{\rm{\;}}&{B'O \bot CC'}\end{array}} \right. \Rightarrow B'O \bot \left( {ACC'} \right) \Rightarrow d\left( {B';\left( {ACC'} \right)} \right) = B'O\)
Tam giác A’B’D’ là tam giác đều cạnh a
\( \Rightarrow B'D' = a \Rightarrow B'O = \dfrac{a}{2}\)
Chọn C.
Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
TXĐ: \(D = R\backslash \left\{ 1 \right\}\)
Ta có: \(\mathop {\lim }\limits_{x \to \infty } \dfrac{{2x - 3}}{{x - 1}} = 2 \Rightarrow y = 2\) là TCN của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to 1} \dfrac{{2x - 3}}{{x - 1}} = \infty {\rm{\;}} \Rightarrow x = 1\) là TCĐ của đồ thị hàm số.
Chọn A.
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {2 - x} \right)\left( {x + 3} \right).\) Mệnh đề nào dưới đây đúng?
Ta có \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {2 - x} \right)\left( {x + 3} \right).\)
Lập bảng xét dấu ta có:
Dựa vào bảng biến thiên ta thấy:
Hàm số đồng biến trên \(\left( { - 3;2} \right)\)và nghịch biến trên \(\left( { - \infty ; - 3} \right),\left( {2; + \infty } \right).\)
Chọn D.
Có bao nhiêu điểm thuộc đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x - 1}}\) thỏa mãn tiếp tuyến với đồ thị tại điểm đó có hệ số góc bằng 2018?
Đk: \(x \ne 1\).
Ta có: \(y' = \dfrac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\).
Hoành độ của các điểm thuộc đồ thị hàm số mà tiếp tuyến tại đó có hệ số góc bằng 2018 là nghiệm của phương trình
\(\dfrac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}} = 2018\) (vô nghiệm) nên không có điểm nào thỏa mãn.
Chọn B.
Số giao điểm của đồ thị hàm số \(y = {x^4} - 2{x^2} + 1\) và đường thẳng \(y = 1\) là:
Xét phương trình hoành độ giao điểm \({x^4} - 2{x^2} + 1 = 1\) \( \Leftrightarrow {x^4} - 2{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = \sqrt 2 }\\{x = {\rm{\;}} - \sqrt 2 }\end{array}} \right.\).
Vậy đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = {x^4} - 2{x^2} + 1\) tại 3 điểm phân biệt
Chọn C.
Cho hình chóp S.ABC có đáy ABC vuông tại A và SB vuông góc với đáy. Biết \(SB = a\) và SC hợp với (SAB) một góc 300 và (SAC) hợp với (ABC) một góc 600. Thể tích khối chóp là:

Ta có:\(\left. {\begin{array}{*{20}{l}}{AC \bot AB}\\{AC \bot SB{\mkern 1mu} {\mkern 1mu} \left( {SB \bot \left( {ABC} \right)} \right)}\end{array}} \right\}\)\( \Rightarrow AC \bot \left( {SAB} \right) \Rightarrow AC \bot SA\)
\( \Rightarrow \) SA là hình chiếu vuông góc của SC trên (SAB) ⇒\(\widehat {\left( {SC;\left( {SAB} \right)} \right)} = \widehat {\left( {SC;SA} \right)} = \widehat {CSA} = {30^0}\)
\(\left. {\begin{array}{*{20}{l}}{\left( {SAC} \right) \cap \left( {ABC} \right) = AC}\\{\left( {SAC} \right) \supset SA \bot AC}\\{\left( {ABC} \right) \supset AB \bot AC}\end{array}} \right\}\)\( \Rightarrow \widehat {\left( {\left( {SAC} \right);\left( {ABC} \right)} \right)} = \widehat {\left( {SA;AB} \right)} = \widehat {SAB} = {60^0}\)
\(SB \bot \left( {ABC} \right) \Rightarrow SB \bot AB \Rightarrow \Delta SAB\) vuông tại B
\( \Rightarrow AB = SB.cot60 = a.\dfrac{1}{{\sqrt 3 }} = \dfrac{{a\sqrt 3 }}{3}\)
\( \Rightarrow SA = \sqrt {S{B^2} + A{B^2}} {\rm{\; = }}\sqrt {{a^2} + \dfrac{{{a^2}}}{3}} {\rm{\;}} = \dfrac{{2a}}{{\sqrt 3 }}\)
Xét tam giác vuông SAC ta có: \(AC = SA.\tan 30 = \dfrac{{2a}}{{\sqrt 3 }}.\dfrac{1}{{\sqrt 3 }} = \dfrac{{2a}}{3}\)
⇒ \({S_{ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}\dfrac{{a\sqrt 3 }}{3}.\dfrac{{2a}}{3} = \dfrac{{{a^2}\sqrt 3 }}{9}\)
⇒ \({V_{S.ABC}} = \dfrac{1}{3}SB.{S_{ABC}} = \dfrac{1}{3}.a.\dfrac{{{a^2}\sqrt 3 }}{9} = \dfrac{{{a^3}\sqrt 3 }}{{27}}\)
Chọn A.
Số đường tiệm cận của đồ thị hàm số \(y = \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}}\) là:
TXĐ: \(x \ge {\rm{\;}} - \dfrac{1}{3};{\mkern 1mu} {\mkern 1mu} x \ne 1;{\mkern 1mu} {\mkern 1mu} x \ne 2\). Ta có:
\(\begin{array}{*{20}{l}}{\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\dfrac{1}{x} + \dfrac{1}{{{x^2}}} - \sqrt {\dfrac{3}{{{x^3}}} + \dfrac{1}{{{x^4}}}} }}{{1 - \dfrac{3}{x} + \dfrac{2}{{{x^2}}}}} = 0}\\{\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}} = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\dfrac{1}{x} + \dfrac{1}{{{x^2}}} - \sqrt {\dfrac{3}{{{x^3}}} + \dfrac{1}{{{x^4}}}} }}{{1 - \dfrac{3}{x} + \dfrac{2}{{{x^2}}}}} = 0}\end{array}\)
Do đó đồ thị hàm số có TCN \(y = 0\).
\(\begin{array}{*{20}{l}}\begin{array}{l}y = \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}}\\ = \dfrac{{\left( {x + 1 - \sqrt {3x + 1} } \right)\left( {x + 1 + \sqrt {3x + 1} } \right)}}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {{x^2} - 3x + 2} \right)}}\\ = \dfrac{{{{\left( {x + 1} \right)}^2} - \left( {3x + 1} \right)}}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {{x^2} - 3x + 2} \right)}}\end{array}\\\begin{array}{l} = \dfrac{{{x^2} - x}}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {{x^2} - 3x + 2} \right)}}\\ = \dfrac{{x\left( {x - 1} \right)}}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {x - 1} \right)\left( {x - 2} \right)}}\\ = \dfrac{x}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {x - 2} \right)}}\end{array}\end{array}\)
Ta có
\(\begin{array}{*{20}{l}}{\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{x}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {x - 2} \right)}} = + \infty }\\{\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{x}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {x - 2} \right)}} = - \infty }\end{array}\), do đó đồ thị hàm số có TCĐ .
Xét phương trình
\(\begin{array}{*{20}{l}}{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} x + 1 + \sqrt {3x + 1} = 0 \Leftrightarrow \sqrt {3x + 1} = - x - 1 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - x - 1 \ge 0}\\{3x + 1 = {{\left( { - x - 1} \right)}^2}}\end{array}} \right.}\\{ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le - 1}\\{3x + 1 = {x^2} + 2x + 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le - 1}\\{{x^2} - x = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le - 1}\\{\left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow x \in \emptyset }\end{array}\)
Vậy hàm số có 1 TCN \(y = 0\) và 1 TCĐ \(x = 2\).
Chọn A.
Cho hình hộp chữ nhật ABCD.A'B'C'D' có diện tích các mặt ABCD, ABB'A', ADD'A' lần lượt bằng \(36c{m^2}\), \(225c{m^2}\), \(100c{m^2}\). Tính thể tích khối A.A'B'D'.

Đặt \(AD = a;{\mkern 1mu} {\mkern 1mu} AB = b;{\mkern 1mu} {\mkern 1mu} AA' = c.\)
Ta có diện tích hình chữ nhật ABCD, ABB'A', ADD'A' lần lượt là \(36c{m^2}\), \(225c{m^2}\), \(100c{m^2}\).
Suy ra \(\left\{ {\begin{array}{*{20}{l}}{ab = 36}\\{bc = 225}\\{ac = 100}\end{array}} \right. \Rightarrow {a^2}{b^2}{c^2} = 36.225.100 = 810000\) \( \Rightarrow abc = 900\).
Ta có: \({V_{A.A'B'D'}} = \dfrac{1}{3}.AA'.{S_{A'B'D'}} = \dfrac{1}{3}AA'.\dfrac{1}{2}{S_{A'B'C'D'}}.\)
\( \Rightarrow {V_{A.A'B'D'}} = \dfrac{1}{6}{V_{ABCD.A'B'C'D'}} = \dfrac{1}{6}.abc = 150{\mkern 1mu} {\mkern 1mu} \left( {c{m^3}} \right)\).
Chọn B.
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ
.jpg)
Đồ thị hàm số \(y = \left| {f\left( x \right) - 2m} \right|\) có 5 điểm cực trị khi và chỉ khi

Đồ thị hàm số \(y = \left| {f\left( x \right) - 2m} \right|\) có 5 điểm cực trị khi và chỉ khi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại 3 điểm phân biệt \( \Leftrightarrow 4 - 2m < 0 < 11 - 2m \Leftrightarrow 4 < 2m < 11 \Leftrightarrow 2 < m < \dfrac{{11}}{2}\).
Chọn C.
Một đường thẳng cắt đồ thị hàm số \(y = {x^4} - 2{x^2}\) tại 4 điểm phân biệt có hoành độ \(0,{\mkern 1mu} 1,{\mkern 1mu} m\) và n. Tính \(S = {m^2} + {n^2}.\)
Gọi phương trình đường thẳng bài cho là: \(d:{\mkern 1mu} {\mkern 1mu} y = ax + b.\)
Đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right):{\mkern 1mu} {\mkern 1mu} y = {x^4} - 2{x^2}\) tại hai điểm có hoành độ là \((0;{\mkern 1mu} {\mkern 1mu} 1) \Rightarrow \) tọa độ hai điểm đó là: \(A\left( {0;{\mkern 1mu} 0} \right),{\mkern 1mu} {\mkern 1mu} B\left( {1; - 1} \right).\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a.0 + b = 0}\\{a + b = {\rm{\;}} - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = 0}\\{a = {\rm{\;}} - 1}\end{array}} \right. \Rightarrow d:{\mkern 1mu} {\mkern 1mu} y = {\rm{\;}} - x.\)
Khi đó ta có phương trình hoành độ giao điểm của hai đồ thị hàm số là:
\(\begin{array}{*{20}{l}}{ - x = {x^4} - 2{x^2} \Leftrightarrow {x^4} - 2{x^2} + x = 0 \Leftrightarrow x\left( {{x^3} - 2x + 1} \right) = 0}\\{ \Leftrightarrow x\left( {x - 1} \right)\left( {{x^2} + x - 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 1}\\{{x^2} + x - 1 = 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( * \right)}\end{array}} \right.}\end{array}\)
Khi đó \(m,{\mkern 1mu} {\mkern 1mu} n\) là hai nghiệm của phương trình \(\left( * \right).\)
Áp dụng hệ thức Vi-ét ta có: \(\left\{ {\begin{array}{*{20}{l}}{m + n = {\rm{\;}} - 1}\\{mn = {\rm{\;}} - 1}\end{array}} \right..\)
\( \Rightarrow S = {m^2} + {n^2} = {\left( {m + n} \right)^2} - 2mn = 1 + 2 = 3.\)
Chọn D.
Đồ thị sau đây là của hàm số \(y = {x^4} - 3{x^2} - 3.\) Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} - 3 = m\) có đúng 3 nghiệm phân biệt.

Số nghiệm của phương trình đã cho là số giao điểm của đồ thị hàm số \(y = {x^4} - 3{x^2} - 3\) và đường thẳng \(y = m.\)
Dựa vào đồ thị hàm số ta thấy đường thẳng \(y = m\) cắt đồ thị hàm số \(y = {x^4} - 3{x^2} - 3\) tại 3 điểm phân biệt \( \Leftrightarrow m = {\rm{\;}} - 3.\)
Chọn B.
Cho khối chóp S.ABC có \(SA \bot \left( {ABC} \right)\), \(SA = a\), \(AB = a\), \(AC = 2a\), \(BC = a\sqrt 3 .\) Tính thể tích khối chóp S.ABC.
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AB = a \Rightarrow A{B^2} = {a^2}}\\{AC = 2a \Rightarrow A{C^2} = 4{a^2}}\\{BC = a\sqrt 3 {\rm{\;}} \Rightarrow B{C^2} = 3{a^2}}\end{array}} \right. \Rightarrow A{B^2} + B{C^2} = A{C^2}\)
\( \Rightarrow \Delta ABC\) vuông tại \(B\) (định lý Pitago đảo)
\(\begin{array}{*{20}{l}}{ \Rightarrow {S_{ABC}} = \dfrac{1}{2}AB.BC = \dfrac{1}{2}.a.a\sqrt 3 {\rm{\;}} = \dfrac{{{a^2}\sqrt 3 }}{2}.}\\{ \Rightarrow {V_{SABC}} = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.a.\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{{a^3}\sqrt 3 }}{6}.}\end{array}\)
Chọn B
Đồ thị hàm số \(y = \dfrac{x}{{\sqrt {{x^2} - 1} }}\) có bao nhiêu đường tiệm cận
TXĐ: \(D = \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\).
Ta có
\(\mathop {\lim }\limits_{x \to {\rm{\;}} + \infty } \dfrac{x}{{\sqrt {{x^2} - 1} }} = 1 \Rightarrow y = 1\) là tiệm cận ngang của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to {\rm{\;}} - \infty } \dfrac{x}{{\sqrt {{x^2} - 1} }} = - 1 \Rightarrow y = {\rm{\;}} - 1\) là tiệm cận ngang của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to \left( { - 1} \right)} \dfrac{x}{{\sqrt {{x^2} - 1} }} = \infty {\rm{\;}} \Rightarrow x = {\rm{\;}} - 1\) là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to 1} \dfrac{x}{{\sqrt {{x^2} - 1} }} = \infty {\rm{\;}} \Rightarrow x = 1\) là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.
Chọn A.
Xét các khẳng định sau
i) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\)và đạt cực tiểu tại \(x = {x_0}\) thì \(\left\{ {\begin{array}{*{20}{l}}{f'({x_0}) = 0}\\{f''({x_0}) > 0}\end{array}} \right.\)
ii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\)và đạt cực đại tại \(x = {x_0}\) thì \(\left\{ {\begin{array}{*{20}{l}}{f'({x_0}) = 0}\\{f''({x_0}) < 0}\end{array}} \right.\)
iii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\) và \(f''({x_0}) = 0\)thì hàm số không đạt cực trị tại \(x = {x_0}\)
Số khẳng định đúng trong các khẳng định trên là
Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\left( {a;{\mkern 1mu} {\mkern 1mu} b} \right)\) và chứa \({x_0} \in \left( {a;{\mkern 1mu} {\mkern 1mu} b} \right)\) thỏa mãn \(f'\left( {{x_0}} \right) = 0\) và có đạo hàm cấp hai khác \(0\) tại điểm \({x_0}\) thì:
+) Hàm số đạt cực đại tại \({x_0}\) khi \(f''\left( {{x_0}} \right) < 0.\)
+) Hàm số đạt cực tiểu tại \({x_0}\) khi \(f''\left( {{x_0}} \right) > 0.\)
\( \Rightarrow \) khẳng định i) và ii) sai.
Khi \(f''\left( {{x_0}} \right) = 0\) ta không kết luận về cực trị của hàm số.
\( \Rightarrow \) khẳng định iii) sai.
Chọn A.
Gọi I là tâm đối xứng của đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x + 2}}\). Tìm tọa độ điểm \(I\).
Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x + 2}}\)có TCĐ: \(x = {\rm{\;}} - 2\), TCN: \(y = 2\)
\( \Rightarrow \)Tọa độ tâm I là tâm đối xứng của đồ thị hàm số trên là: \(I\left( { - 2;2} \right)\).
Chọn A.
Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng BC' và B'D' là:
Do \(BD\parallel B'D'\) nên \(\angle \left( {BC';B'D'} \right) = \angle \left( {BC';BD} \right)\).
Giả sử cạnh của hình lập phương bằng 1. Áp dụng định lí Pytago trong các tam giác vuông ta có: \(BC' = BD = C'D = \sqrt 2 \).
Suy ra tam giác BC'D đều \( \Rightarrow \angle C'BD = {60^0}\).
Vậy \(\angle \left( {BC';B'D'} \right) = {60^0}\).
Chọn C.
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = 2{x^3} + 3{x^2} - 1\) trên đoạn\(\left[ { - 2; - \dfrac{1}{2}} \right]\). Tính \(P = M - m\).
\(f\left( x \right) = 2{x^3} + 3{x^2} - 1 \Rightarrow f'\left( x \right) = 6{x^2} + 6x\); \(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {ktm} \right)}\\{x = {\rm{\;}} - 1{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {tm} \right)}\end{array}} \right.\)
Hàm số \(f\left( x \right)\) liên tục trên \(\left[ { - 2; - \dfrac{1}{2}} \right]\), có \(f\left( { - 2} \right) = - 5;f\left( { - 1} \right) = 0;f\left( { - \dfrac{1}{2}} \right) = {\rm{\;}} - \dfrac{1}{2}\)
\( \Rightarrow m = \mathop {\min }\limits_{\left[ { - 2; - \dfrac{1}{2}} \right]} f\left( x \right) = {\rm{\;}} - 5;{\mkern 1mu} {\mkern 1mu} M = \mathop {\max }\limits_{\left[ { - 2; - \dfrac{1}{2}} \right]} f\left( x \right) = 0\)\( \Rightarrow P = M - m = 5\).
Chọn C.
Khối đa diện đều loại \(\left\{ {5;3} \right\}\) có bao nhiêu mặt?
Khối đa diện đều loại \(\left\{ {5;3} \right\} \Rightarrow n = 5;{\mkern 1mu} {\mkern 1mu} p = 3\)
\( \Rightarrow 3D = 2C = 5M \Rightarrow M\) chia hết cho 6
Khi \(M = 6\) thì khối đa diện đều là khối lập phương thuộc loại \(\left\{ {4;3} \right\}\) (ktm).
Vậy \(M = 12\).
Chọn A.
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) = {\rm{\;}} - \left( {x - 10} \right){\left( {x - 11} \right)^2}{\left( {x - 12} \right)^{2019}}\) . Khẳng định nào dưới đây đúng ?
Ta có : \(f'\left( x \right) = {\rm{\;}} - \left( {x - 10} \right){\left( {x - 11} \right)^2}{\left( {x - 12} \right)^{2019}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 10}\\{x = 11}\\{x = 12}\end{array}} \right.\)
BBT :

Từ BBT ta thấy hàm số đồng biến trên khoảng \(\left( {10;12} \right)\) nên C đúng.
Hàm số có 2 điểm cực trị.
Chọn C.
Cho hình chóp S.ABCD có đáy là hình thoi cạnh \(a\), \(\angle BAD = {60^0}\), cạnh bên \(SA = a\) và SA vuông góc với mặt phẳng đáy. Tính khoảng cách từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\).
Ta có \(AB\parallel CD{\mkern 1mu} {\mkern 1mu} \left( {gt} \right) \Rightarrow AB\parallel \left( {SCD} \right)\) \( \Rightarrow d\left( {B;\left( {SCD} \right)} \right) = d\left( {A;\left( {SCD} \right)} \right)\).
Trong \(\left( {ABCD} \right)\) kẻ \(AH \bot CD\).
Vì \(\angle BAD = {60^0} \Rightarrow \angle ADC = {120^0}\) nên điểm \(H\) nằm ngoài đoạn thẳng CD.
Trong \(\left( {SAH} \right)\) dựng \(AK \bot SH{\mkern 1mu} {\mkern 1mu} \left( {H \in SH} \right)\) ta có:
\(\left\{ {\begin{array}{*{20}{l}}{CD \bot AH}\\{CD \bot SA{\mkern 1mu} {\mkern 1mu} \left( {SA \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\) \( \Rightarrow CD \bot \left( {SAH} \right) \Rightarrow CD \bot AK\).
\(\left\{ {\begin{array}{*{20}{l}}{AK \bot SH}\\{AK \bot CD}\end{array}} \right. \Rightarrow AK \bot \left( {SCD} \right)\)\( \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = AK\).
Xét tam giác vuông AHD có \(\angle ADH = {180^0} - \angle ADC = {60^0}\), \(AD = a\) \( \Rightarrow AH = AD.sin{60^0} = \dfrac{{a\sqrt 3 }}{2}\).
Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AH\), suy ra tam giác SAH vuông tại \(A\), áp dụng hệ thức lượng trong tam giác vuông ta có: \(AK = \dfrac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }}\) \( = \dfrac{{a.\dfrac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + \dfrac{{3{a^2}}}{4}} }} = \dfrac{{a\sqrt {21} }}{7}\).
Vậy \(d\left( {B;\left( {SCD} \right)} \right) = \dfrac{{a\sqrt {21} }}{7}\).
Chọn A.
Cho hàm số \(y = \dfrac{{x + 3}}{{ - 1 - x}}\). Tìm mệnh đề đúng trong các mệnh đề sau:
TXĐ: \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).
Ta có: \(y' = \dfrac{2}{{{{\left( { - 1 - x} \right)}^2}}} > 0{\mkern 1mu} {\mkern 1mu} \forall x \in D\).
Vậy hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\). Do đó hàm số đồng biến trên \(\left( {2; + \infty } \right)\).
Chọn D.
Tìm giá trị nhỏ nhất của hàm số \(y = \dfrac{{{x^2} - 5}}{{x + 3}}\) trên \(\left[ {0;2} \right].\)
TXĐ: \(D = R\backslash \left\{ { = 3} \right\}\).
Ta có:
\(\begin{array}{*{20}{l}}{y' = \dfrac{{2x\left( {x + 3} \right) - {x^2} + 5}}{{{{\left( {x + 3} \right)}^2}}} = \dfrac{{{x^2} + 6x + 5}}{{{{\left( {x + 3} \right)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 1 \notin \left[ {0;2} \right]}\\{x = - 5 \notin \left[ {0;2} \right]}\end{array}} \right.}\\{y\left( 0 \right) = - \dfrac{5}{3};{\mkern 1mu} {\mkern 1mu} y\left( 2 \right) = - \dfrac{1}{5}}\\{ \Rightarrow \mathop {\min }\limits_{x \in \left[ {0;2} \right]} y = \dfrac{{ - 5}}{3}}\end{array}\)
Chọn A.
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy, \(AB = 2a,{\mkern 1mu} {\mkern 1mu} \widehat {BAC} = {60^0}\) và \(SA = a\sqrt 2 .\) Góc giữa đường thẳng SB và mặt phẳng \(\left( {SAC} \right)\) bằng
Kẻ \(BH \bot AC{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {H \in AC} \right)\)\( \Rightarrow {\mkern 1mu} {\mkern 1mu} BH \bot \left( {SAC} \right)\)
Suy ra \(\widehat {SB;\left( {SAC} \right)} = \widehat {\left( {SB;SH} \right)} = \widehat {BSH}.\)
Tam giác ABH vuông tại H, có \(\sin \widehat {BAH} = \dfrac{{BH}}{{AB}} \Rightarrow BH = a\sqrt 3 .\)
Tam giác SAB vuông tại A, có \(SB = \sqrt {S{A^2} + A{B^2}} = a\sqrt 6 .\)
Do đó \(SB = \sqrt 2 {\mkern 1mu} BH{\mkern 1mu} {\mkern 1mu} \Rightarrow {\mkern 1mu} {\mkern 1mu} \Delta {\mkern 1mu} ABH\) vuông cân tại \(H{\mkern 1mu} {\mkern 1mu} \Rightarrow {\mkern 1mu} {\mkern 1mu} \widehat {BSH} = {45^0}.\)
Chọn B.