Đề thi giữa HK1 môn Toán 12 năm 2021-2022 - Trường THPT Nguyễn Trung Trực

Đề thi giữa HK1 môn Toán 12 năm 2021-2022 - Trường THPT Nguyễn Trung Trực

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 92 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 247967

Đồ thị hàm số \(y = {x^3} - 3{{\rm{x}}^2} + 2\) đi qua điểm nào?

Xem đáp án

Thay tọa độ các điểm vào phương trình \(y = f\left( x \right)\)

Có \({1^3} - {3.1^2} + 2 = 0\)\( \Rightarrow P\left( {1;0} \right)\) thuộc đồ thị hàm số \(y = f\left( x \right)\).

Câu 2: Trắc nghiệm ID: 247968

Hình chóp tứ giác có mấy mặt?

Xem đáp án

Hình chóp n-giác có \(n + 1\) mặt.

Hình chóp tứ giác có 5 mặt

Câu 3: Trắc nghiệm ID: 247969

Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;3} \right]\) và có bảng biến thiên như hình bên dưới.

Mệnh đề nào sau đây là mệnh đề đúng?

Xem đáp án

Hàm f đổi dấu từ dương sang âm qua \({x_0}\) thì đạt cực đại tại \({x_0}\)

Hàm f đổi dấu từ âm sang dương qua \({x_0}\) thì đạt cực tiểu tại \({x_0}\)

Vậy hàm f đổi dấu từ dương sang âm qua \(x = 0\) thì đạt cực đại tại \(x = 0\).

Chọn B

Câu 4: Trắc nghiệm ID: 247970

Thể tích V của khối chóp có diện tích đáy bằng B và chiều cao bằng h, được tính theo công thức

Xem đáp án

Thể tích hình chóp có diện tích đáy B, chiều cao h là: \(V = \dfrac{1}{3}B.h\)

Câu 5: Trắc nghiệm ID: 247971

Khối lăng trụ có diện tích đáy bằng 4, chiều cao bằng 3 có thể tích bằng

Xem đáp án

Thể tích hình chóp có diện tích đáy bằng 4, chiều cao bằng 3 là: \(V = 4.3 = 12\)

Câu 6: Trắc nghiệm ID: 247972

Đường tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) có phương trình là

Xem đáp án

\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{x + 1}}{{x - 2}} =  + \infty \)

Tiệm cận đứng của hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) là \(x = 2\)

Câu 7: Trắc nghiệm ID: 247973

Đường tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) có phương trình là

Xem đáp án

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x + 1}}{{x - 2}} = 1\)\( \Rightarrow y = 1\) là đường tiệm cận ngang.

Câu 8: Trắc nghiệm ID: 247974

Khối lập phương cạnh bằng 2 có thể tích bằng

Xem đáp án

Thể tích hình lập phương cạnh a: \(V = {a^3}\)

Thể tích lập phương cạnh 2 là: \(V = 8\)

Câu 9: Trắc nghiệm ID: 247975

Hàm số \(y = \dfrac{{3 - 2x}}{{x + 7}}\) nghịch biến trên khoảng nào sau đây?

Xem đáp án

Tập xác định: \(D = \mathbb{R}{\rm{\backslash }}\left\{ { - 7} \right\}\).

\(\begin{array}{l}y' = \dfrac{{ - 2\left( {x + 7} \right) - \left( {3 - 2x} \right)}}{{{{\left( {x + 7} \right)}^2}}}\\ = \dfrac{{ - 17}}{{{{\left( {x + 7} \right)}^2}}} < 0\forall x \in D\end{array}\)

\( \Rightarrow \)Hàm số nghịch biến trên \(\left( { - \infty ; - 7} \right)\) và \(\left( { - 7; + \infty } \right)\)

Câu 10: Trắc nghiệm ID: 247976

Hàm số \({x^4} + 2{x^2} - 3\) có bao nhiêu điểm cực trị?

Xem đáp án

\(y' = 4{x^3} + 4x = 4x\left( {{x^2} + 1} \right)\)

\(y' = 0 \Leftrightarrow x = 0\)

Bảng biến thiên:

\( \Rightarrow \) Hàm số có 1 điểm cực trị.

Câu 11: Trắc nghiệm ID: 247977

Cho hàm số \(y = f\left( x \right) = {x^2} - 2x + 3\). Mệnh đề nào sau đây đúng?

Xem đáp án

Ta có \(y' = 2x - 2\)

\(y' = 0 \Leftrightarrow x = 1 \in \left[ {0;3} \right]\)

\(f\left( 0 \right) = 3,f\left( 3 \right) = 6\)

\(\mathop {\min }\limits_{\left[ {0;3} \right]} y = f\left( 1 \right) = 2\)

Câu 12: Trắc nghiệm ID: 247978

Đường cong trong hình vẽ bên dưới là đồ thị của hàm số nào?

Xem đáp án

Đồ thị trên là đồ thị của hàm số trùng phương.

\(\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty  \Rightarrow a > 0\). \( \Rightarrow \)C, D sai.

Hàm số có các điểm cực trị là: \(x = 0;x =  \pm 1\). \( \Rightarrow \)A sai.

Câu 13: Trắc nghiệm ID: 247979

Đồ thị trong hình vẽ dưới đây là đồ thị của hàm số nào?

Xem đáp án

Dựa vào đồ thị hàm số ta thấy đồ thị hàm số có TCĐ là \(x = 1\) \( \Rightarrow \) loại đáp án A.

Đồ thị hàm số đi qua điểm \(\left( { - 1;{\mkern 1mu} {\mkern 1mu} 0} \right)\) và \(\left( {0; - 1} \right)\) \( \Rightarrow \) chọn đáp án B.

Chọn B.

Câu 14: Trắc nghiệm ID: 247980

Số tiếp tuyến của đồ thị hàm số \(y = {x^4} - 2{x^2} - 3\) song song với trục hoành là :

Xem đáp án

Phương trình trục hoành: \(y = 0\).

Ta có \(y' = 4{x^3} - 4x \Rightarrow \) Hệ số góc của tiếp tuyến tại điểm có hoành độ \(x = {x_0}\) là \(y'\left( {{x_0}} \right) = 4x_0^3 - 4{x_0}\).

Tiếp tuyến // Ox \( \Rightarrow y'\left( {{x_0}} \right) = 0 \Leftrightarrow 4x_0^3 - 4{x_0} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x_0} = 0}\\{{x_0} = {\rm{\;}} \pm 1}\end{array}} \right.\).

Khi \(x =  \pm 1\) ta tìm được hai tiếp tuyến trùng nhau là  \(y =  - 3\)

Vậy có hai tiếp tuyến song song với trục hoành.

Chọn C.

Câu 15: Trắc nghiệm ID: 247981

Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

 

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Xem đáp án

Dựa vào BBT ta thấy hàm số nghịch biến trên các khoảng \(\left( { - \infty ;{\mkern 1mu} {\mkern 1mu}  - 2} \right)\) và \(\left( {0;{\mkern 1mu} {\mkern 1mu} 2} \right).\)

Chọn C.

Câu 16: Trắc nghiệm ID: 247982

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ

 

Hàm số đồng biến trên khoảng:

Xem đáp án

Dựa vào hình vẽ ta nhận thấy hàm số đồng biến trên \(\left( { - 2; - 1} \right)\).

Chọn A.

Câu 17: Trắc nghiệm ID: 247983

Tổng số mặt, số cạnh và số đỉnh của một hình lập phương là:

Xem đáp án

Hình lập phương có \(6\) mặt, \(8\) đỉnh và 12 cạnh nên tổng số cạnh, mặt đỉnh là: \(6 + 8 + 12 = 26\).

Chọn A.

Câu 18: Trắc nghiệm ID: 247984

Cho hình hộp đứng ABCD.A’B’C’D’ có đáy ABCD là một hình thoi cạnh a, \(\widehat {ABC} = {120^0}\); \(AA' = 4a\)  Tính khoảng cách giữa hai đường thẳng A’C và BB’?

Xem đáp án

 

Ta có

\(\begin{array}{*{20}{l}}{\rm{\;}}&{BB'//CC' \Rightarrow BB'//\left( {ACC'} \right) \supset AC'}\\{\rm{\;}}&{ \Rightarrow d\left( {AC';BB'} \right) = d\left( {BB';\left( {ACC'} \right)} \right) = d\left( {B';\left( {ACC'} \right)} \right)}\end{array}\)

Gọi \(O = A'C' \cap B'D'\) ta có :

 \(\left\{ {\begin{array}{*{20}{l}}{\rm{\;}}&{B'O \bot A'C'}\\{\rm{\;}}&{B'O \bot CC'}\end{array}} \right. \Rightarrow B'O \bot \left( {ACC'} \right) \Rightarrow d\left( {B';\left( {ACC'} \right)} \right) = B'O\)

Tam giác A’B’D’ là tam giác đều cạnh a

\( \Rightarrow B'D' = a \Rightarrow B'O = \dfrac{a}{2}\)

Chọn C.

Câu 19: Trắc nghiệm ID: 247985

Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:

Xem đáp án

TXĐ: \(D = R\backslash \left\{ 1 \right\}\)

Ta có: \(\mathop {\lim }\limits_{x \to \infty } \dfrac{{2x - 3}}{{x - 1}} = 2 \Rightarrow y = 2\) là TCN của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to 1} \dfrac{{2x - 3}}{{x - 1}} = \infty {\rm{\;}} \Rightarrow x = 1\) là TCĐ của đồ thị hàm số.

Chọn A.

Câu 20: Trắc nghiệm ID: 247986

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {2 - x} \right)\left( {x + 3} \right).\) Mệnh đề nào dưới đây đúng?

Xem đáp án

Ta có \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {2 - x} \right)\left( {x + 3} \right).\)

Lập bảng xét dấu ta có:

 

Dựa vào bảng biến thiên ta thấy:

Hàm số đồng biến trên \(\left( { - 3;2} \right)\)và nghịch biến trên \(\left( { - \infty ; - 3} \right),\left( {2; + \infty } \right).\)

Chọn D.

Câu 21: Trắc nghiệm ID: 247987

Có bao nhiêu điểm thuộc đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x - 1}}\) thỏa mãn tiếp tuyến với đồ thị tại điểm đó có hệ số góc bằng 2018?

Xem đáp án

Đk: \(x \ne 1\).

Ta có: \(y' = \dfrac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\).

Hoành độ của các điểm thuộc đồ thị hàm số mà tiếp tuyến tại đó có hệ số góc bằng 2018 là nghiệm của phương trình

\(\dfrac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}} = 2018\) (vô nghiệm) nên không có điểm nào thỏa mãn.

Chọn B.

Câu 22: Trắc nghiệm ID: 247988

Số giao điểm của đồ thị hàm số \(y = {x^4} - 2{x^2} + 1\) và đường thẳng \(y = 1\) là:

Xem đáp án

Xét phương trình hoành độ giao điểm \({x^4} - 2{x^2} + 1 = 1\) \( \Leftrightarrow {x^4} - 2{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = \sqrt 2 }\\{x = {\rm{\;}} - \sqrt 2 }\end{array}} \right.\).

Vậy đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = {x^4} - 2{x^2} + 1\) tại 3 điểm phân biệt

Chọn C.

Câu 23: Trắc nghiệm ID: 247989

Cho hình chóp S.ABC có đáy ABC vuông tại A và SB vuông góc với đáy. Biết \(SB = a\) và SC hợp với (SAB) một góc 300 và (SAC) hợp với (ABC) một góc 600. Thể tích khối chóp là:

Xem đáp án

 

Ta có:\(\left. {\begin{array}{*{20}{l}}{AC \bot AB}\\{AC \bot SB{\mkern 1mu} {\mkern 1mu} \left( {SB \bot \left( {ABC} \right)} \right)}\end{array}} \right\}\)\( \Rightarrow AC \bot \left( {SAB} \right) \Rightarrow AC \bot SA\)   

\( \Rightarrow \) SA là hình chiếu vuông góc của SC trên (SAB) ⇒\(\widehat {\left( {SC;\left( {SAB} \right)} \right)} = \widehat {\left( {SC;SA} \right)} = \widehat {CSA} = {30^0}\)

\(\left. {\begin{array}{*{20}{l}}{\left( {SAC} \right) \cap \left( {ABC} \right) = AC}\\{\left( {SAC} \right) \supset SA \bot AC}\\{\left( {ABC} \right) \supset AB \bot AC}\end{array}} \right\}\)\( \Rightarrow \widehat {\left( {\left( {SAC} \right);\left( {ABC} \right)} \right)} = \widehat {\left( {SA;AB} \right)} = \widehat {SAB} = {60^0}\)

\(SB \bot \left( {ABC} \right) \Rightarrow SB \bot AB \Rightarrow \Delta SAB\) vuông tại B

\( \Rightarrow AB = SB.cot60 = a.\dfrac{1}{{\sqrt 3 }} = \dfrac{{a\sqrt 3 }}{3}\)

\( \Rightarrow SA = \sqrt {S{B^2} + A{B^2}} {\rm{\; = }}\sqrt {{a^2} + \dfrac{{{a^2}}}{3}} {\rm{\;}} = \dfrac{{2a}}{{\sqrt 3 }}\)

Xét tam giác vuông SAC ta có: \(AC = SA.\tan 30 = \dfrac{{2a}}{{\sqrt 3 }}.\dfrac{1}{{\sqrt 3 }} = \dfrac{{2a}}{3}\)

⇒ \({S_{ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}\dfrac{{a\sqrt 3 }}{3}.\dfrac{{2a}}{3} = \dfrac{{{a^2}\sqrt 3 }}{9}\)

⇒ \({V_{S.ABC}} = \dfrac{1}{3}SB.{S_{ABC}} = \dfrac{1}{3}.a.\dfrac{{{a^2}\sqrt 3 }}{9} = \dfrac{{{a^3}\sqrt 3 }}{{27}}\)

Chọn A.

Câu 24: Trắc nghiệm ID: 247990

Số đường tiệm cận của đồ thị hàm số \(y = \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}}\) là:

Xem đáp án

TXĐ: \(x \ge {\rm{\;}} - \dfrac{1}{3};{\mkern 1mu} {\mkern 1mu} x \ne 1;{\mkern 1mu} {\mkern 1mu} x \ne 2\). Ta có:

\(\begin{array}{*{20}{l}}{\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\dfrac{1}{x} + \dfrac{1}{{{x^2}}} - \sqrt {\dfrac{3}{{{x^3}}} + \dfrac{1}{{{x^4}}}} }}{{1 - \dfrac{3}{x} + \dfrac{2}{{{x^2}}}}} = 0}\\{\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}} = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\dfrac{1}{x} + \dfrac{1}{{{x^2}}} - \sqrt {\dfrac{3}{{{x^3}}} + \dfrac{1}{{{x^4}}}} }}{{1 - \dfrac{3}{x} + \dfrac{2}{{{x^2}}}}} = 0}\end{array}\)

Do đó đồ thị hàm số có TCN \(y = 0\).

\(\begin{array}{*{20}{l}}\begin{array}{l}y = \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}}\\ = \dfrac{{\left( {x + 1 - \sqrt {3x + 1} } \right)\left( {x + 1 + \sqrt {3x + 1} } \right)}}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {{x^2} - 3x + 2} \right)}}\\ = \dfrac{{{{\left( {x + 1} \right)}^2} - \left( {3x + 1} \right)}}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {{x^2} - 3x + 2} \right)}}\end{array}\\\begin{array}{l} = \dfrac{{{x^2} - x}}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {{x^2} - 3x + 2} \right)}}\\ = \dfrac{{x\left( {x - 1} \right)}}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {x - 1} \right)\left( {x - 2} \right)}}\\ = \dfrac{x}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {x - 2} \right)}}\end{array}\end{array}\)

Ta có

\(\begin{array}{*{20}{l}}{\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{x}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {x - 2} \right)}} =  + \infty }\\{\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{x}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {x - 2} \right)}} =  - \infty }\end{array}\), do đó đồ thị hàm số có TCĐ .

Xét phương trình

\(\begin{array}{*{20}{l}}{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} x + 1 + \sqrt {3x + 1}  = 0 \Leftrightarrow \sqrt {3x + 1}  =  - x - 1 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - x - 1 \ge 0}\\{3x + 1 = {{\left( { - x - 1} \right)}^2}}\end{array}} \right.}\\{ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le  - 1}\\{3x + 1 = {x^2} + 2x + 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le  - 1}\\{{x^2} - x = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le  - 1}\\{\left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow x \in \emptyset }\end{array}\)

Vậy hàm số có 1 TCN \(y = 0\) và 1 TCĐ \(x = 2\).

Chọn A.  

Câu 25: Trắc nghiệm ID: 247991

Cho hình hộp chữ nhật ABCD.A'B'C'D' có diện tích các mặt ABCD, ABB'A', ADD'A'  lần lượt bằng \(36c{m^2}\), \(225c{m^2}\), \(100c{m^2}\). Tính thể tích khối A.A'B'D'.

Xem đáp án

 

Đặt \(AD = a;{\mkern 1mu} {\mkern 1mu} AB = b;{\mkern 1mu} {\mkern 1mu} AA' = c.\)

Ta có diện tích hình chữ nhật ABCD, ABB'A', ADD'A' lần lượt là \(36c{m^2}\), \(225c{m^2}\), \(100c{m^2}\).

Suy ra \(\left\{ {\begin{array}{*{20}{l}}{ab = 36}\\{bc = 225}\\{ac = 100}\end{array}} \right. \Rightarrow {a^2}{b^2}{c^2} = 36.225.100 = 810000\) \( \Rightarrow abc = 900\).

Ta có: \({V_{A.A'B'D'}} = \dfrac{1}{3}.AA'.{S_{A'B'D'}} = \dfrac{1}{3}AA'.\dfrac{1}{2}{S_{A'B'C'D'}}.\)

\( \Rightarrow {V_{A.A'B'D'}} = \dfrac{1}{6}{V_{ABCD.A'B'C'D'}} = \dfrac{1}{6}.abc = 150{\mkern 1mu} {\mkern 1mu} \left( {c{m^3}} \right)\).

Chọn B.

Câu 26: Trắc nghiệm ID: 247992

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ

 

Đồ thị hàm số \(y = \left| {f\left( x \right) - 2m} \right|\) có 5 điểm cực trị khi và chỉ khi

Xem đáp án

Đồ thị hàm số \(y = \left| {f\left( x \right) - 2m} \right|\) có 5 điểm cực trị khi và chỉ khi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại 3 điểm phân biệt \( \Leftrightarrow 4 - 2m < 0 < 11 - 2m \Leftrightarrow 4 < 2m < 11 \Leftrightarrow 2 < m < \dfrac{{11}}{2}\).

Chọn C.

Câu 27: Trắc nghiệm ID: 247993

Một đường thẳng cắt đồ thị hàm số \(y = {x^4} - 2{x^2}\) tại 4 điểm phân biệt có hoành độ \(0,{\mkern 1mu} 1,{\mkern 1mu} m\) và n. Tính \(S = {m^2} + {n^2}.\) 

Xem đáp án

Gọi phương trình đường thẳng bài cho là: \(d:{\mkern 1mu} {\mkern 1mu} y = ax + b.\)

Đường thẳng  \(d\) cắt đồ thị hàm số \(\left( C \right):{\mkern 1mu} {\mkern 1mu} y = {x^4} - 2{x^2}\) tại hai điểm có hoành độ là \((0;{\mkern 1mu} {\mkern 1mu} 1) \Rightarrow \) tọa độ hai điểm đó là: \(A\left( {0;{\mkern 1mu} 0} \right),{\mkern 1mu} {\mkern 1mu} B\left( {1; - 1} \right).\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a.0 + b = 0}\\{a + b = {\rm{\;}} - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = 0}\\{a = {\rm{\;}} - 1}\end{array}} \right. \Rightarrow d:{\mkern 1mu} {\mkern 1mu} y = {\rm{\;}} - x.\)

Khi đó ta có phương trình hoành độ giao điểm của hai đồ thị hàm số là:

\(\begin{array}{*{20}{l}}{ - x = {x^4} - 2{x^2} \Leftrightarrow {x^4} - 2{x^2} + x = 0 \Leftrightarrow x\left( {{x^3} - 2x + 1} \right) = 0}\\{ \Leftrightarrow x\left( {x - 1} \right)\left( {{x^2} + x - 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 1}\\{{x^2} + x - 1 = 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( * \right)}\end{array}} \right.}\end{array}\)

Khi đó \(m,{\mkern 1mu} {\mkern 1mu} n\) là hai nghiệm của phương trình \(\left( * \right).\)

Áp dụng hệ thức Vi-ét ta có: \(\left\{ {\begin{array}{*{20}{l}}{m + n = {\rm{\;}} - 1}\\{mn = {\rm{\;}} - 1}\end{array}} \right..\)

\( \Rightarrow S = {m^2} + {n^2} = {\left( {m + n} \right)^2} - 2mn = 1 + 2 = 3.\)

Chọn D.

Câu 28: Trắc nghiệm ID: 247994

Đồ thị sau đây là của hàm số \(y = {x^4} - 3{x^2} - 3.\) Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} - 3 = m\) có đúng 3 nghiệm phân biệt.

Xem đáp án

Số nghiệm của phương trình đã cho là số giao điểm của đồ thị hàm số \(y = {x^4} - 3{x^2} - 3\) và đường thẳng \(y = m.\)

Dựa vào đồ thị hàm số ta thấy đường thẳng \(y = m\)  cắt đồ thị hàm số \(y = {x^4} - 3{x^2} - 3\) tại 3 điểm phân biệt \( \Leftrightarrow m = {\rm{\;}} - 3.\)

Chọn B.

Câu 29: Trắc nghiệm ID: 247995

Cho khối chóp S.ABC có \(SA \bot \left( {ABC} \right)\), \(SA = a\), \(AB = a\), \(AC = 2a\), \(BC = a\sqrt 3 .\) Tính thể tích khối chóp S.ABC.

Xem đáp án

 

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AB = a \Rightarrow A{B^2} = {a^2}}\\{AC = 2a \Rightarrow A{C^2} = 4{a^2}}\\{BC = a\sqrt 3 {\rm{\;}} \Rightarrow B{C^2} = 3{a^2}}\end{array}} \right. \Rightarrow A{B^2} + B{C^2} = A{C^2}\)

\( \Rightarrow \Delta ABC\) vuông tại \(B\) (định lý Pitago đảo)

\(\begin{array}{*{20}{l}}{ \Rightarrow {S_{ABC}} = \dfrac{1}{2}AB.BC = \dfrac{1}{2}.a.a\sqrt 3 {\rm{\;}} = \dfrac{{{a^2}\sqrt 3 }}{2}.}\\{ \Rightarrow {V_{SABC}} = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.a.\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{{a^3}\sqrt 3 }}{6}.}\end{array}\)

Chọn B

Câu 30: Trắc nghiệm ID: 247996

Đồ thị hàm số \(y = \dfrac{x}{{\sqrt {{x^2} - 1} }}\) có bao nhiêu đường tiệm cận

Xem đáp án

TXĐ: \(D = \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\).

Ta có

\(\mathop {\lim }\limits_{x \to {\rm{\;}} + \infty } \dfrac{x}{{\sqrt {{x^2} - 1} }} = 1 \Rightarrow y = 1\) là tiệm cận  ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {\rm{\;}} - \infty } \dfrac{x}{{\sqrt {{x^2} - 1} }} =  - 1 \Rightarrow y = {\rm{\;}} - 1\) là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to \left( { - 1} \right)} \dfrac{x}{{\sqrt {{x^2} - 1} }} = \infty {\rm{\;}} \Rightarrow x = {\rm{\;}} - 1\) là tiệm cận đứng của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to 1} \dfrac{x}{{\sqrt {{x^2} - 1} }} = \infty {\rm{\;}} \Rightarrow x = 1\) là tiệm cận đứng của đồ thị hàm số.

Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.

Chọn A.

Câu 31: Trắc nghiệm ID: 247997

Xét các khẳng định sau

i) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\)và đạt cực tiểu tại \(x = {x_0}\) thì \(\left\{ {\begin{array}{*{20}{l}}{f'({x_0}) = 0}\\{f''({x_0}) > 0}\end{array}} \right.\)

ii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\)và đạt cực đại tại \(x = {x_0}\) thì \(\left\{ {\begin{array}{*{20}{l}}{f'({x_0}) = 0}\\{f''({x_0}) < 0}\end{array}} \right.\)

iii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\) và \(f''({x_0}) = 0\)thì hàm số không đạt cực trị tại \(x = {x_0}\)

Số khẳng định đúng trong các khẳng định trên là

Xem đáp án

Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\left( {a;{\mkern 1mu} {\mkern 1mu} b} \right)\) và chứa \({x_0} \in \left( {a;{\mkern 1mu} {\mkern 1mu} b} \right)\) thỏa mãn  \(f'\left( {{x_0}} \right) = 0\) và có đạo hàm cấp hai khác \(0\) tại điểm \({x_0}\) thì:

+) Hàm số đạt cực đại tại \({x_0}\) khi \(f''\left( {{x_0}} \right) < 0.\)

+) Hàm số đạt cực tiểu tại \({x_0}\) khi \(f''\left( {{x_0}} \right) > 0.\)

\( \Rightarrow \) khẳng định i) và ii) sai.

Khi \(f''\left( {{x_0}} \right) = 0\) ta không kết luận về cực trị của hàm số.

\( \Rightarrow \) khẳng định iii) sai.

Chọn A.

Câu 32: Trắc nghiệm ID: 247998

Gọi I là tâm đối xứng của đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x + 2}}\). Tìm tọa độ điểm \(I\).

Xem đáp án

Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x + 2}}\)có TCĐ: \(x = {\rm{\;}} - 2\), TCN: \(y = 2\)

\( \Rightarrow \)Tọa độ tâm I  là tâm đối xứng của đồ thị hàm số trên là: \(I\left( { - 2;2} \right)\).

Chọn A.

Câu 33: Trắc nghiệm ID: 247999

Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng BC' và B'D' là:

Xem đáp án

 

Do \(BD\parallel B'D'\) nên \(\angle \left( {BC';B'D'} \right) = \angle \left( {BC';BD} \right)\).

Giả sử cạnh của hình lập phương bằng 1. Áp dụng định lí Pytago trong các tam giác vuông ta có: \(BC' = BD = C'D = \sqrt 2 \).

Suy ra tam giác BC'D đều \( \Rightarrow \angle C'BD = {60^0}\).

Vậy \(\angle \left( {BC';B'D'} \right) = {60^0}\).

Chọn C.

Câu 34: Trắc nghiệm ID: 248000

Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = 2{x^3} + 3{x^2} - 1\) trên đoạn\(\left[ { - 2; - \dfrac{1}{2}} \right]\). Tính \(P = M - m\). 

Xem đáp án

\(f\left( x \right) = 2{x^3} + 3{x^2} - 1 \Rightarrow f'\left( x \right) = 6{x^2} + 6x\); \(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {ktm} \right)}\\{x = {\rm{\;}} - 1{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {tm} \right)}\end{array}} \right.\)

Hàm số \(f\left( x \right)\) liên tục trên \(\left[ { - 2; - \dfrac{1}{2}} \right]\), có \(f\left( { - 2} \right) =  - 5;f\left( { - 1} \right) = 0;f\left( { - \dfrac{1}{2}} \right) = {\rm{\;}} - \dfrac{1}{2}\)

\( \Rightarrow m = \mathop {\min }\limits_{\left[ { - 2; - \dfrac{1}{2}} \right]} f\left( x \right) = {\rm{\;}} - 5;{\mkern 1mu} {\mkern 1mu} M = \mathop {\max }\limits_{\left[ { - 2; - \dfrac{1}{2}} \right]} f\left( x \right) = 0\)\( \Rightarrow P = M - m = 5\).

Chọn C.

Câu 35: Trắc nghiệm ID: 248001

Khối đa diện đều loại \(\left\{ {5;3} \right\}\) có bao nhiêu mặt?

Xem đáp án

Khối đa diện đều loại \(\left\{ {5;3} \right\} \Rightarrow n = 5;{\mkern 1mu} {\mkern 1mu} p = 3\)

\( \Rightarrow 3D = 2C = 5M \Rightarrow M\) chia hết cho 6

Khi \(M = 6\) thì khối đa diện đều là khối lập phương thuộc loại \(\left\{ {4;3} \right\}\) (ktm).

Vậy \(M = 12\).

Chọn A.

Câu 36: Trắc nghiệm ID: 248002

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) = {\rm{\;}} - \left( {x - 10} \right){\left( {x - 11} \right)^2}{\left( {x - 12} \right)^{2019}}\) . Khẳng định nào dưới đây đúng ?

Xem đáp án

Ta có : \(f'\left( x \right) = {\rm{\;}} - \left( {x - 10} \right){\left( {x - 11} \right)^2}{\left( {x - 12} \right)^{2019}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 10}\\{x = 11}\\{x = 12}\end{array}} \right.\)

BBT : 

Từ BBT ta thấy hàm số đồng biến trên khoảng \(\left( {10;12} \right)\) nên C đúng.

Hàm số có 2 điểm cực trị.

Chọn C.

Câu 37: Trắc nghiệm ID: 248003

Cho hình chóp S.ABCD có đáy là hình thoi cạnh \(a\), \(\angle BAD = {60^0}\), cạnh bên \(SA = a\) và SA vuông góc với mặt phẳng đáy. Tính khoảng cách từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\).

Xem đáp án

 

Ta có \(AB\parallel CD{\mkern 1mu} {\mkern 1mu} \left( {gt} \right) \Rightarrow AB\parallel \left( {SCD} \right)\) \( \Rightarrow d\left( {B;\left( {SCD} \right)} \right) = d\left( {A;\left( {SCD} \right)} \right)\).

Trong \(\left( {ABCD} \right)\) kẻ \(AH \bot CD\).

Vì \(\angle BAD = {60^0} \Rightarrow \angle ADC = {120^0}\) nên điểm \(H\) nằm ngoài đoạn thẳng CD.

Trong \(\left( {SAH} \right)\) dựng \(AK \bot SH{\mkern 1mu} {\mkern 1mu} \left( {H \in SH} \right)\) ta có:

\(\left\{ {\begin{array}{*{20}{l}}{CD \bot AH}\\{CD \bot SA{\mkern 1mu} {\mkern 1mu} \left( {SA \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\) \( \Rightarrow CD \bot \left( {SAH} \right) \Rightarrow CD \bot AK\).

\(\left\{ {\begin{array}{*{20}{l}}{AK \bot SH}\\{AK \bot CD}\end{array}} \right. \Rightarrow AK \bot \left( {SCD} \right)\)\( \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = AK\).

Xét tam giác vuông AHD có \(\angle ADH = {180^0} - \angle ADC = {60^0}\), \(AD = a\) \( \Rightarrow AH = AD.sin{60^0} = \dfrac{{a\sqrt 3 }}{2}\).

Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AH\), suy ra tam giác SAH vuông tại \(A\), áp dụng hệ thức lượng trong tam giác vuông ta có: \(AK = \dfrac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }}\) \( = \dfrac{{a.\dfrac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + \dfrac{{3{a^2}}}{4}} }} = \dfrac{{a\sqrt {21} }}{7}\).

Vậy \(d\left( {B;\left( {SCD} \right)} \right) = \dfrac{{a\sqrt {21} }}{7}\).

Chọn A.

Câu 38: Trắc nghiệm ID: 248004

Cho hàm số \(y = \dfrac{{x + 3}}{{ - 1 - x}}\). Tìm mệnh đề đúng trong các mệnh đề sau:

Xem đáp án

TXĐ: \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).

Ta có: \(y' = \dfrac{2}{{{{\left( { - 1 - x} \right)}^2}}} > 0{\mkern 1mu} {\mkern 1mu} \forall x \in D\).

Vậy hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\). Do đó hàm số đồng biến trên \(\left( {2; + \infty } \right)\).

Chọn D.

Câu 39: Trắc nghiệm ID: 248005

Tìm giá trị nhỏ nhất của hàm số \(y = \dfrac{{{x^2} - 5}}{{x + 3}}\) trên \(\left[ {0;2} \right].\)

Xem đáp án

TXĐ: \(D = R\backslash \left\{ { = 3} \right\}\).

Ta có:

\(\begin{array}{*{20}{l}}{y' = \dfrac{{2x\left( {x + 3} \right) - {x^2} + 5}}{{{{\left( {x + 3} \right)}^2}}} = \dfrac{{{x^2} + 6x + 5}}{{{{\left( {x + 3} \right)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x =  - 1 \notin \left[ {0;2} \right]}\\{x =  - 5 \notin \left[ {0;2} \right]}\end{array}} \right.}\\{y\left( 0 \right) =  - \dfrac{5}{3};{\mkern 1mu} {\mkern 1mu} y\left( 2 \right) =  - \dfrac{1}{5}}\\{ \Rightarrow \mathop {\min }\limits_{x \in \left[ {0;2} \right]} y = \dfrac{{ - 5}}{3}}\end{array}\)

Chọn A.

Câu 40: Trắc nghiệm ID: 248006

Cho hình chóp S.ABC có đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy, \(AB = 2a,{\mkern 1mu} {\mkern 1mu} \widehat {BAC} = {60^0}\) và \(SA = a\sqrt 2 .\) Góc giữa đường thẳng SB và mặt phẳng \(\left( {SAC} \right)\) bằng

Xem đáp án

 

Kẻ \(BH \bot AC{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {H \in AC} \right)\)\( \Rightarrow {\mkern 1mu} {\mkern 1mu} BH \bot \left( {SAC} \right)\)

Suy ra \(\widehat {SB;\left( {SAC} \right)} = \widehat {\left( {SB;SH} \right)} = \widehat {BSH}.\)

Tam giác ABH vuông tại H, có \(\sin \widehat {BAH} = \dfrac{{BH}}{{AB}} \Rightarrow BH = a\sqrt 3 .\)

Tam giác SAB vuông tại A, có \(SB = \sqrt {S{A^2} + A{B^2}}  = a\sqrt 6 .\)

Do đó \(SB = \sqrt 2 {\mkern 1mu} BH{\mkern 1mu} {\mkern 1mu}  \Rightarrow {\mkern 1mu} {\mkern 1mu} \Delta {\mkern 1mu} ABH\) vuông cân tại \(H{\mkern 1mu} {\mkern 1mu}  \Rightarrow {\mkern 1mu} {\mkern 1mu} \widehat {BSH} = {45^0}.\)

Chọn B.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »