Lời giải của giáo viên
ToanVN.com
TXĐ: \(x \ge {\rm{\;}} - \dfrac{1}{3};{\mkern 1mu} {\mkern 1mu} x \ne 1;{\mkern 1mu} {\mkern 1mu} x \ne 2\). Ta có:
\(\begin{array}{*{20}{l}}{\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\dfrac{1}{x} + \dfrac{1}{{{x^2}}} - \sqrt {\dfrac{3}{{{x^3}}} + \dfrac{1}{{{x^4}}}} }}{{1 - \dfrac{3}{x} + \dfrac{2}{{{x^2}}}}} = 0}\\{\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}} = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\dfrac{1}{x} + \dfrac{1}{{{x^2}}} - \sqrt {\dfrac{3}{{{x^3}}} + \dfrac{1}{{{x^4}}}} }}{{1 - \dfrac{3}{x} + \dfrac{2}{{{x^2}}}}} = 0}\end{array}\)
Do đó đồ thị hàm số có TCN \(y = 0\).
\(\begin{array}{*{20}{l}}\begin{array}{l}y = \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}}\\ = \dfrac{{\left( {x + 1 - \sqrt {3x + 1} } \right)\left( {x + 1 + \sqrt {3x + 1} } \right)}}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {{x^2} - 3x + 2} \right)}}\\ = \dfrac{{{{\left( {x + 1} \right)}^2} - \left( {3x + 1} \right)}}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {{x^2} - 3x + 2} \right)}}\end{array}\\\begin{array}{l} = \dfrac{{{x^2} - x}}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {{x^2} - 3x + 2} \right)}}\\ = \dfrac{{x\left( {x - 1} \right)}}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {x - 1} \right)\left( {x - 2} \right)}}\\ = \dfrac{x}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {x - 2} \right)}}\end{array}\end{array}\)
Ta có
\(\begin{array}{*{20}{l}}{\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{x}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {x - 2} \right)}} = + \infty }\\{\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{x}{{\left( {x + 1 + \sqrt {3x + 1} } \right)\left( {x - 2} \right)}} = - \infty }\end{array}\), do đó đồ thị hàm số có TCĐ .
Xét phương trình
\(\begin{array}{*{20}{l}}{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} x + 1 + \sqrt {3x + 1} = 0 \Leftrightarrow \sqrt {3x + 1} = - x - 1 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - x - 1 \ge 0}\\{3x + 1 = {{\left( { - x - 1} \right)}^2}}\end{array}} \right.}\\{ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le - 1}\\{3x + 1 = {x^2} + 2x + 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le - 1}\\{{x^2} - x = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le - 1}\\{\left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow x \in \emptyset }\end{array}\)
Vậy hàm số có 1 TCN \(y = 0\) và 1 TCĐ \(x = 2\).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Khối lăng trụ có diện tích đáy bằng 4, chiều cao bằng 3 có thể tích bằng
Đồ thị hàm số \(y = \dfrac{x}{{\sqrt {{x^2} - 1} }}\) có bao nhiêu đường tiệm cận
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ
.jpg)
Hàm số đồng biến trên khoảng:
Xét các khẳng định sau
i) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\)và đạt cực tiểu tại \(x = {x_0}\) thì \(\left\{ {\begin{array}{*{20}{l}}{f'({x_0}) = 0}\\{f''({x_0}) > 0}\end{array}} \right.\)
ii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\)và đạt cực đại tại \(x = {x_0}\) thì \(\left\{ {\begin{array}{*{20}{l}}{f'({x_0}) = 0}\\{f''({x_0}) < 0}\end{array}} \right.\)
iii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\) và \(f''({x_0}) = 0\)thì hàm số không đạt cực trị tại \(x = {x_0}\)
Số khẳng định đúng trong các khẳng định trên là
Số tiếp tuyến của đồ thị hàm số \(y = {x^4} - 2{x^2} - 3\) song song với trục hoành là :
Cho khối chóp S.ABC có \(SA \bot \left( {ABC} \right)\), \(SA = a\), \(AB = a\), \(AC = 2a\), \(BC = a\sqrt 3 .\) Tính thể tích khối chóp S.ABC.
Có bao nhiêu điểm thuộc đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x - 1}}\) thỏa mãn tiếp tuyến với đồ thị tại điểm đó có hệ số góc bằng 2018?
Thể tích V của khối chóp có diện tích đáy bằng B và chiều cao bằng h, được tính theo công thức
Cho hàm số \(y = f\left( x \right) = {x^2} - 2x + 3\). Mệnh đề nào sau đây đúng?
Khối đa diện đều loại \(\left\{ {5;3} \right\}\) có bao nhiêu mặt?
Tổng số mặt, số cạnh và số đỉnh của một hình lập phương là:
Một đường thẳng cắt đồ thị hàm số \(y = {x^4} - 2{x^2}\) tại 4 điểm phân biệt có hoành độ \(0,{\mkern 1mu} 1,{\mkern 1mu} m\) và n. Tính \(S = {m^2} + {n^2}.\)
Đường cong trong hình vẽ bên dưới là đồ thị của hàm số nào?
Cho hình chóp S.ABCD có đáy là hình thoi cạnh \(a\), \(\angle BAD = {60^0}\), cạnh bên \(SA = a\) và SA vuông góc với mặt phẳng đáy. Tính khoảng cách từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\).
Đồ thị sau đây là của hàm số \(y = {x^4} - 3{x^2} - 3.\) Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} - 3 = m\) có đúng 3 nghiệm phân biệt.
