Hàm số \(y = \dfrac{{3 - 2x}}{{x + 7}}\) nghịch biến trên khoảng nào sau đây?
A. \(\left( { - \infty ;\dfrac{3}{2}} \right)\)
B. \(\left( { - \infty ; + \infty } \right)\)
C. \(\left( { - \infty ; - 7} \right)\)
D. \(\left( { - 8; + \infty } \right)\)
Lời giải của giáo viên
ToanVN.com
Tập xác định: \(D = \mathbb{R}{\rm{\backslash }}\left\{ { - 7} \right\}\).
\(\begin{array}{l}y' = \dfrac{{ - 2\left( {x + 7} \right) - \left( {3 - 2x} \right)}}{{{{\left( {x + 7} \right)}^2}}}\\ = \dfrac{{ - 17}}{{{{\left( {x + 7} \right)}^2}}} < 0\forall x \in D\end{array}\)
\( \Rightarrow \)Hàm số nghịch biến trên \(\left( { - \infty ; - 7} \right)\) và \(\left( { - 7; + \infty } \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Số đường tiệm cận của đồ thị hàm số \(y = \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}}\) là:
Khối lăng trụ có diện tích đáy bằng 4, chiều cao bằng 3 có thể tích bằng
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ
.jpg)
Hàm số đồng biến trên khoảng:
Số tiếp tuyến của đồ thị hàm số \(y = {x^4} - 2{x^2} - 3\) song song với trục hoành là :
Đồ thị hàm số \(y = \dfrac{x}{{\sqrt {{x^2} - 1} }}\) có bao nhiêu đường tiệm cận
Cho hàm số \(y = f\left( x \right) = {x^2} - 2x + 3\). Mệnh đề nào sau đây đúng?
Thể tích V của khối chóp có diện tích đáy bằng B và chiều cao bằng h, được tính theo công thức
Tổng số mặt, số cạnh và số đỉnh của một hình lập phương là:
Xét các khẳng định sau
i) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\)và đạt cực tiểu tại \(x = {x_0}\) thì \(\left\{ {\begin{array}{*{20}{l}}{f'({x_0}) = 0}\\{f''({x_0}) > 0}\end{array}} \right.\)
ii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\)và đạt cực đại tại \(x = {x_0}\) thì \(\left\{ {\begin{array}{*{20}{l}}{f'({x_0}) = 0}\\{f''({x_0}) < 0}\end{array}} \right.\)
iii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\) và \(f''({x_0}) = 0\)thì hàm số không đạt cực trị tại \(x = {x_0}\)
Số khẳng định đúng trong các khẳng định trên là
Đường cong trong hình vẽ bên dưới là đồ thị của hàm số nào?
Có bao nhiêu điểm thuộc đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x - 1}}\) thỏa mãn tiếp tuyến với đồ thị tại điểm đó có hệ số góc bằng 2018?
Cho khối chóp S.ABC có \(SA \bot \left( {ABC} \right)\), \(SA = a\), \(AB = a\), \(AC = 2a\), \(BC = a\sqrt 3 .\) Tính thể tích khối chóp S.ABC.
Khối đa diện đều loại \(\left\{ {5;3} \right\}\) có bao nhiêu mặt?
Một đường thẳng cắt đồ thị hàm số \(y = {x^4} - 2{x^2}\) tại 4 điểm phân biệt có hoành độ \(0,{\mkern 1mu} 1,{\mkern 1mu} m\) và n. Tính \(S = {m^2} + {n^2}.\)
Đồ thị sau đây là của hàm số \(y = {x^4} - 3{x^2} - 3.\) Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} - 3 = m\) có đúng 3 nghiệm phân biệt.
