Câu hỏi Đáp án 3 năm trước 59

Một đường thẳng cắt đồ thị hàm số \(y = {x^4} - 2{x^2}\) tại 4 điểm phân biệt có hoành độ \(0,{\mkern 1mu} 1,{\mkern 1mu} m\) và n. Tính \(S = {m^2} + {n^2}.\) 

A. \(S = 1.\)

B. \(S = 2.\)     

C. \(S = 0.\)

D. \(S = 3.\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Gọi phương trình đường thẳng bài cho là: \(d:{\mkern 1mu} {\mkern 1mu} y = ax + b.\)

Đường thẳng  \(d\) cắt đồ thị hàm số \(\left( C \right):{\mkern 1mu} {\mkern 1mu} y = {x^4} - 2{x^2}\) tại hai điểm có hoành độ là \((0;{\mkern 1mu} {\mkern 1mu} 1) \Rightarrow \) tọa độ hai điểm đó là: \(A\left( {0;{\mkern 1mu} 0} \right),{\mkern 1mu} {\mkern 1mu} B\left( {1; - 1} \right).\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a.0 + b = 0}\\{a + b = {\rm{\;}} - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = 0}\\{a = {\rm{\;}} - 1}\end{array}} \right. \Rightarrow d:{\mkern 1mu} {\mkern 1mu} y = {\rm{\;}} - x.\)

Khi đó ta có phương trình hoành độ giao điểm của hai đồ thị hàm số là:

\(\begin{array}{*{20}{l}}{ - x = {x^4} - 2{x^2} \Leftrightarrow {x^4} - 2{x^2} + x = 0 \Leftrightarrow x\left( {{x^3} - 2x + 1} \right) = 0}\\{ \Leftrightarrow x\left( {x - 1} \right)\left( {{x^2} + x - 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 1}\\{{x^2} + x - 1 = 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( * \right)}\end{array}} \right.}\end{array}\)

Khi đó \(m,{\mkern 1mu} {\mkern 1mu} n\) là hai nghiệm của phương trình \(\left( * \right).\)

Áp dụng hệ thức Vi-ét ta có: \(\left\{ {\begin{array}{*{20}{l}}{m + n = {\rm{\;}} - 1}\\{mn = {\rm{\;}} - 1}\end{array}} \right..\)

\( \Rightarrow S = {m^2} + {n^2} = {\left( {m + n} \right)^2} - 2mn = 1 + 2 = 3.\)

Chọn D.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Số đường tiệm cận của đồ thị hàm số \(y = \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}}\) là:

Xem lời giải » 3 năm trước 69
Câu 2: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ

 

Hàm số đồng biến trên khoảng:

Xem lời giải » 3 năm trước 63
Câu 3: Trắc nghiệm

Đồ thị hàm số \(y = \dfrac{x}{{\sqrt {{x^2} - 1} }}\) có bao nhiêu đường tiệm cận

Xem lời giải » 3 năm trước 63
Câu 4: Trắc nghiệm

Xét các khẳng định sau

i) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\)và đạt cực tiểu tại \(x = {x_0}\) thì \(\left\{ {\begin{array}{*{20}{l}}{f'({x_0}) = 0}\\{f''({x_0}) > 0}\end{array}} \right.\)

ii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\)và đạt cực đại tại \(x = {x_0}\) thì \(\left\{ {\begin{array}{*{20}{l}}{f'({x_0}) = 0}\\{f''({x_0}) < 0}\end{array}} \right.\)

iii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\) và \(f''({x_0}) = 0\)thì hàm số không đạt cực trị tại \(x = {x_0}\)

Số khẳng định đúng trong các khẳng định trên là

Xem lời giải » 3 năm trước 62
Câu 5: Trắc nghiệm

Khối lăng trụ có diện tích đáy bằng 4, chiều cao bằng 3 có thể tích bằng

Xem lời giải » 3 năm trước 62
Câu 6: Trắc nghiệm

Có bao nhiêu điểm thuộc đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x - 1}}\) thỏa mãn tiếp tuyến với đồ thị tại điểm đó có hệ số góc bằng 2018?

Xem lời giải » 3 năm trước 61
Câu 7: Trắc nghiệm

Số tiếp tuyến của đồ thị hàm số \(y = {x^4} - 2{x^2} - 3\) song song với trục hoành là :

Xem lời giải » 3 năm trước 61
Câu 8: Trắc nghiệm

Cho khối chóp S.ABC có \(SA \bot \left( {ABC} \right)\), \(SA = a\), \(AB = a\), \(AC = 2a\), \(BC = a\sqrt 3 .\) Tính thể tích khối chóp S.ABC.

Xem lời giải » 3 năm trước 60
Câu 9: Trắc nghiệm

Thể tích V của khối chóp có diện tích đáy bằng B và chiều cao bằng h, được tính theo công thức

Xem lời giải » 3 năm trước 60
Câu 10: Trắc nghiệm

Cho hàm số \(y = f\left( x \right) = {x^2} - 2x + 3\). Mệnh đề nào sau đây đúng?

Xem lời giải » 3 năm trước 60
Câu 11: Trắc nghiệm

Tổng số mặt, số cạnh và số đỉnh của một hình lập phương là:

Xem lời giải » 3 năm trước 60
Câu 12: Trắc nghiệm

Đường cong trong hình vẽ bên dưới là đồ thị của hàm số nào?

Xem lời giải » 3 năm trước 59
Câu 13: Trắc nghiệm

Cho hình chóp S.ABCD có đáy là hình thoi cạnh \(a\), \(\angle BAD = {60^0}\), cạnh bên \(SA = a\) và SA vuông góc với mặt phẳng đáy. Tính khoảng cách từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\).

Xem lời giải » 3 năm trước 59
Câu 14: Trắc nghiệm

Khối đa diện đều loại \(\left\{ {5;3} \right\}\) có bao nhiêu mặt?

Xem lời giải » 3 năm trước 59
Câu 15: Trắc nghiệm

Đồ thị sau đây là của hàm số \(y = {x^4} - 3{x^2} - 3.\) Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} - 3 = m\) có đúng 3 nghiệm phân biệt.

Xem lời giải » 3 năm trước 58

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »