Câu hỏi Đáp án 3 năm trước 100

Trong không gian với hệ tọa độ $Oxyz$, cho điểm \(A(1; - 2;3)\) và đường thẳng $d$ có phương trình \(\dfrac{{x + 1}}{2} = \dfrac{{y - 2}}{1} = \dfrac{{z + 3}}{{ - 1}}\). Tính đường kính của mặt cầu $(S)$ có tâm $A$ và tiếp xúc với đường thẳng $d$.

A.

\(5\sqrt 2 \)


B.

\(10\sqrt 2 \)


Đáp án chính xác ✅

C.

\(2\sqrt 5 \)      


D.

\(4\sqrt 5 \)


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: b

Phương trình mặt cầu $(S) $ có dạng ${(x - 1)^2} + {(y + 2)^2} + (z - 3){}^2 = {R^2}$

Phương trình tham số của $d$ là: \(d:\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 2 + t\\z =  - 3 - t\end{array} \right.\)

Tọa độ giao điểm của $(S)$ và $d$ là nghiệm của hệ \(\left\{ \begin{array}{l}{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = {R^2}\\x =  - 1 + 2t\\y = 2 + t\\z =  - 3 - t\end{array} \right.\) (*)

$(S)$ tiếp xúc với $d$ khi và chỉ khi $(*)$ có nghiệm kép

\( \Leftrightarrow {( - 2 + 2t)^2} + {(4 + t)^2} + {( - 6 - t)^2} = {R^2}\) có nghiệm kép

\( \Leftrightarrow 6{t^2} + 12t + 56 - R{}^2 = 0\) có nghiệm kép

\( \Leftrightarrow \Delta ' = {\left( { - 6} \right)^2} - 6.(56 - R{}^2) = 0 \Leftrightarrow 6{R^2} - 300 = 0 \Leftrightarrow {R^2} = 50 \Leftrightarrow R = 5\sqrt 2 \)

Suy ra đường kính của mặt cầu $(S)$ là \(10\sqrt 2 \).

Hướng dẫn giải:

$(S)$ tiếp xúc với $d$ khi và chỉ khi hệ phương trình tọa độ giao điểm của $(S)$ và $d$ có nghiệm kép.

Giải thích thêm:

- Có thể sử dụng công thức tính khoảng cách từ điểm đến đường thẳng để tính bán kính mặt cầu:

\(R = d\left( {A,d} \right) = \dfrac{{\left| {\left[ {\overrightarrow {AM} ,\overrightarrow {{u_d}} } \right]} \right|}}{{\left| {\overrightarrow {{u_d}} } \right|}}\)

- Từ đó suy ra đường kính \(D = 2R\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-2y+4z-1=0\) và mặt phẳng \(\left( P \right):x+y-z-m=0.\) Tìm tất cả m để \(\left( P \right)\) cắt \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính lớn nhất.

Xem lời giải » 3 năm trước 162
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\dfrac{{x - 3}}{1} = \dfrac{{y - 3}}{3} = \dfrac{z}{2}\), mặt phẳng \(\left( \alpha  \right):x + y - z + 3 = 0\) và điểm \(A\left( {1;2 - 1} \right)\). Đường thẳng \(\Delta \) đi qua \(A\) cắt \(d\) và song song với mặt phẳng \(\left( \alpha  \right)\) có phương trình là:

Xem lời giải » 3 năm trước 147
Câu 3: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\) cho mặt phẳng \(\left( P \right):x - 2y + 2z - 3 = 0\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + 5 = 0\). Giả sử \(M \in \left( P \right)\) và \(N \in \left( S \right)\)  sao cho \(\overrightarrow {MN} \) cùng phương với vectơ \(\overrightarrow u  = \left( {1;0;1} \right)\) và khoảng cách \(MN\) lớn nhất. Tính \(MN\) 

Xem lời giải » 3 năm trước 143
Câu 4: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho đường thẳng  $d:\dfrac{{x - 1}}{{ - 1}} = \dfrac{{y - 2}}{1} = \dfrac{{z + 1}}{2}$, điểm $A (2;  -1; 1)$. Gọi $I$ là hình chiếu vuông góc của $A$ lên $d$. Viết phương trình mặt cầu $(C)$ có tâm $I$ và đi qua $A$.

Xem lời giải » 3 năm trước 139
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( -1;-2;0 \right),B\left( 0;-4;0 \right),C\left( 0;0;-3 \right)\). Phương trình mặt phẳng \(\left( P \right)\) nào dưới đây đi qua A, gốc tọa độ O và cách đều hai điểm B và C?

Xem lời giải » 3 năm trước 135
Câu 6: Trắc nghiệm

Trong không gian với hệ tọa độ  $Oxyz$, cho hai điểm  \(A(0;2; - 1)\) , \(B(2;0;1)\). Tìm tọa độ điểm $M$ thuộc trong mặt phẳng $\left( {Oyz} \right)$ sao cho :\(M{A^2} + M{B^2}\) đạt giá trị bé nhất.

Xem lời giải » 3 năm trước 135
Câu 7: Trắc nghiệm

Trong không gian với hệ tọa độ  $Oxyz$, cho các điểm  $A\left( {1,2, - 4} \right);{\rm{ }}B\left( {1, - 3,1} \right){\rm{ }} và {\rm{ }}C\left( {2,2,3} \right)$. Mặt cầu $(S) $ đi qua  $A,B,C$ và có tâm thuộc mặt phẳng $(xOy) $ có bán kính là :

Xem lời giải » 3 năm trước 134
Câu 8: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz,\) cho ba điểm \(A\left( 1;0;0 \right),\,\,B\left( 0;2;0 \right),\,\,C\left( 0;0;-\,3 \right).\) Gọi \(H\) là trực tâm của tam giác \(ABC,\) thì độ dài đoạn \(OH\) là

Xem lời giải » 3 năm trước 129
Câu 9: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm $A\left( {1; - 1;0} \right),\,\,B\left( {1;0; - 2} \right),$ $C\left( {3; - 1; - 1} \right)$. Tính khoảng cách từ điểm $A$ đến đường thẳng $BC$.

Xem lời giải » 3 năm trước 127
Câu 10: Trắc nghiệm

Trong  không  gian với   hệ  tọa  độ $Oxyz$,  cho đường  thẳng $d$ có phương trình \(\dfrac{{x - 1}}{3} = \dfrac{{y + 2}}{2} = \dfrac{{z - 3}}{{ - 4}}\) và \(d':\dfrac{{x + 1}}{4} = \dfrac{y}{1} = \dfrac{{z + 1}}{2}\)  . Điểm nào sau đây không thuộc đường thẳng $d$ nhưng thuộc đường thẳng \(d'\)?

Xem lời giải » 3 năm trước 121
Câu 11: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho hai điểm $A\left( {1;0;3} \right),B\left( {11; - 5; - 12} \right)$. Điểm $M\left( {a;b;c} \right)$ thuộc mặt phẳng $\left( {Oxy} \right)$ sao cho $3M{A^2} + 2M{B^2}$ nhỏ nhất. Tính $P = a + b + c$

Xem lời giải » 3 năm trước 120
Câu 12: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y + 6z + 5 = 0$. Tiếp diện của $(S)$ tại điểm $M(-1;2;0)$ có phương trình là:

Xem lời giải » 3 năm trước 119
Câu 13: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\) thỏa mãn hệ thức \(\overrightarrow {OM}  = 2\overrightarrow i  + \overrightarrow j \). Tọa độ của điểm \(M\) là:

Xem lời giải » 3 năm trước 119
Câu 14: Trắc nghiệm

Phương trình tham số của đường thẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có VTCP \(\overrightarrow u  = \left( {a;b;c} \right)\) là:

Xem lời giải » 3 năm trước 109
Câu 15: Trắc nghiệm

Phương trình đường thẳng đi qua điểm $A\left( {1,2,3} \right)$ và vuông góc với 2 đường thẳng cho trước: \({d_1}:\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{{z + 1}}{{ - 1}}\) và \({d_2}:\dfrac{{x - 2}}{3} = \dfrac{{y - 1}}{2} = \dfrac{{z - 1}}{2}\) là: 

Xem lời giải » 3 năm trước 104

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »