Câu hỏi Đáp án 3 năm trước 99

Tìm tất cả các giá trị của tham số $m$ để đường thẳng $y =  - 2x + m$ cắt đồ thị $(H)$ của hàm số $y = \dfrac{{2x + 3}}{{x + 2}}$ tại hai điểm$A,{\text{ }}B$ phân biệt sao cho $P = k_1^{2018} + k_2^{2018}$ đạt giá trị nhỏ nhất (với ${k_1},{k_2}$ là hệ số góc của tiếp tuyến tại $A,{\text{ }}B$ của đồ thị $(H)$.

A.

$m =  - 3$       


B.

$m =  - 2$


Đáp án chính xác ✅

C.

$m = 3$


D.

$m = 2$


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: b

Ta có: \(y' = \dfrac{1}{{{{\left( {x + 2} \right)}^2}}}\)

Xét phương trình hoành độ giao điểm của đường thẳng $d$ đã cho và $\left( H \right)$.

$\begin{array}{l} - 2x + m = \dfrac{{2x + 3}}{{x + 2}}\\ \Leftrightarrow \left( {x + 2} \right)\left( { - 2x + m} \right) = 2x + 3\\ \Leftrightarrow  - 2{x^2} + \left( {m - 4} \right)x + 2m = 2x + 3\\ \Leftrightarrow 2{x^2} + \left( {6 - m} \right)x + 3 - 2m = 0{\rm{ }}\left( * \right)\end{array}$

$d$ cắt $\left( H \right)$ tại 2 điểm phân biệt $ \Leftrightarrow $ Phương trình (*) có $2$  nghiệm phân biệt khác \( - 2\)

$ \Leftrightarrow \left\{ \begin{array}{l}\Delta  = {\left( {6 - m} \right)^2} - 8\left( {3 - 2m} \right) > 0\\2.{\left( { - 2} \right)^2} + \left( {6 - m} \right).\left( { - 2} \right) + 3 - 2m \ne 0\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 4m + 12 > 0\\ - 1 \ne 0\end{array} \right.$

(luôn đúng)

Gọi hoành độ giao điểm hai điểm \(A,B\) lần lượt là \({x_1},{x_2}\), khi đó:\(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{m - 6}}{2}\\{x_1}{x_2} = \dfrac{{3 - 2m}}{2}\end{array} \right.\)

Ta có:

\({k_1}.{k_2} = \dfrac{1}{{{{\left( {{x_1} + 2} \right)}^2}}}.\dfrac{1}{{{{\left( {{x_2} + 2} \right)}^2}}} = \dfrac{1}{{{{\left[ {\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right)} \right]}^2}}}\)

\( = \dfrac{1}{{{{\left[ {{x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) + 4} \right]}^2}}} = \dfrac{1}{{{{\left[ {\dfrac{{3 - 2m}}{2} + 2.\dfrac{{m - 6}}{2} + 4} \right]}^2}}}\)

\( = \dfrac{1}{{{{\left( {\dfrac{{3 - 2m + 2m - 12 + 8}}{2}} \right)}^2}}} = 4\)

Khi đó \(P = k_1^{2018} + k_2^{2018} \ge 2{\left| {{k_1}{k_2}} \right|^{1009}} = {2.4^{1009}} = {2^{2019}}\).

Dấu “=” xảy ra khi \({k_1} = {k_2} = 2\) hay hai tiếp tuyến tại hai giao điểm song song.

Điều này chỉ xảy ra khi hai giao điểm này đối xứng với nhau qua tâm đối xứng \(I\) của đồ thị \(\left( H \right)\) hay \(d\) đi qua \(I\left( { - 2;2} \right)\) là giao điểm hai đường tiệm cận của đồ thị hàm số.

\( \Leftrightarrow I \in d \Leftrightarrow 2 = -2.\left( {-2} \right) + m \Leftrightarrow m = -2\)

Hướng dẫn giải:

+ Tính \(y'\).

+ Tìm điều kiện để đường thẳng $d$  cắt $\left( H \right)$ tại 2 điểm phân biệt.

+ Đánh giá và tìm GTNN của biểu thức \(P = k_1^{2018} + k_2^{2018}\) sử dụng bất đẳng thức Cô-si với \({k_1},{k_2}\) là hệ số góc của tiếp tuyến tại hai giao điểm của hai đồ thị hàm số.

+ Tìm điều kiện để $d$ đi qua giao điểm $I$ của $2$ đường tiệm cận của $\left( H \right)$.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Anh A mua 1 chiếc Laptop giá $23$ triệu đồng theo hình thức trả góp, lãi suất mỗi tháng là $0,5\% $. Hỏi mỗi tháng anh A phải trả cho cửa hàng bao nhiêu tiền để sau $6$ tháng anh trả hết nợ?

Xem lời giải » 3 năm trước 148
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho mặt phẳng \((P):x - y - z - 1 = 0\) và đường thẳng $d:\dfrac{{x + 1}}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z - 2}}{3}$.   Phương trình đường thẳng \(\Delta \)  qua \(A(1;1; - 2)\) vuông góc với $d$ và song song với $(P)$ là:

Xem lời giải » 3 năm trước 131
Câu 3: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(M\left( 1;2;3 \right).\) Mặt phẳng \(\left( P \right)\) đi qua M và cắt các tia \(Ox;\,\,Oy;\,\,Oz\) lần lượt tại các điểm \(A;\,\,B;\,\,C\) \(\left( A;\,\,B;\,\,C\ne O \right)\) sao cho thể tích của tứ diện \(OABC\) nhỏ nhất. Phương trình của mặt phẳng \(\left( P \right)\) là

Xem lời giải » 3 năm trước 131
Câu 4: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x  +  4y  -  4z  -  m  =  0}}$ có bán kính $R = 5$. Tìm giá trị của $m$?

Xem lời giải » 3 năm trước 123
Câu 5: Trắc nghiệm

Khoảng cách từ điểm \(M\left( {2;0;1} \right)\) đến đường thẳng $\Delta :\dfrac{{x - 1}}{1} = \dfrac{y}{2} = \dfrac{{z - 2}}{1}$ là:

Xem lời giải » 3 năm trước 120
Câu 6: Trắc nghiệm

Cho ba điểm $A,B,C$ lần lượt biểu diễn các số phức sau \({z_1} = 1 + i;\,{z_2} = {z_1}^2;\,{z_3} = m - i\). Tìm các giá trị thực của $m$ sao cho tam giác $ABC$ vuông tại $B$.

Xem lời giải » 3 năm trước 118
Câu 7: Trắc nghiệm

Cho hình chóp tam giác đều $S.ABC$ có cạnh đáy bằng $a$, góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Tính thể tích khối chóp $S.ABC$?

Xem lời giải » 3 năm trước 116
Câu 8: Trắc nghiệm

Cho hàm số $y = \dfrac{{x - 2}}{{{x^2} - 2x + m}}\left( C \right).$ Tất cả các giá trị của m để (C) có 3 đường tiệm cận là:

Xem lời giải » 3 năm trước 113
Câu 9: Trắc nghiệm

Thể tích vật thể tròn xoay sinh ra khi quay hình phẳng giới hạn bới các đường \(x=\sqrt{y};\,y=-x+2,x=0\) quanh trục $Ox$ có giá trị là kết quả nào sau đây ?

Xem lời giải » 3 năm trước 113
Câu 10: Trắc nghiệm

Trong không gian $Oxyz$ cho ba vecto \(\vec a = \left( { - 1;1;0} \right),\vec b = \left( {1;1;0} \right),\vec c = \left( {1;1;1} \right)\). Mệnh đề nào dưới đây sai?

Xem lời giải » 3 năm trước 113
Câu 11: Trắc nghiệm

Cho hình chóp $S.ABC$ có $SA \bot (ABC);AC = b,AB = c,\widehat {BAC} = \alpha $. Gọi $B',C'$ lần lượt là hình chiếu vuông góc của $A$ lên $SB,SC$. Tính bán kính mặt cầu ngoại tiếp khối chóp $A.{\rm{ }}BCC'B'$ theo $b,c,\alpha $

Xem lời giải » 3 năm trước 113
Câu 12: Trắc nghiệm

Cho hình lăng trụ $ABC.A’B’C’$ có độ dài tất cả các cạnh bằng $a$ và hình chiếu vuông góc của đỉnh $C$ trên $(ABB’A’)$ là tâm của hình bình hành $ABB’A’$. Thể tích của khối lăng trụ là:

Xem lời giải » 3 năm trước 111
Câu 13: Trắc nghiệm

Hãy chọn cụm từ (hoặc từ) cho dưới đây để sau khi điền nó vào chỗ trống mệnh đề sau trở thành mệnh đề đúng:

“Số cạnh của một hình đa diện luôn……………….số mặt của hình đa diện ấy”

Xem lời giải » 3 năm trước 107
Câu 14: Trắc nghiệm

Gọi \(G\left( {4; - 1;3} \right)\) là tọa độ trọng tâm tam giác \(ABC\) với \(A\left( {0;2; - 1} \right),B\left( { - 1;3;2} \right)\). Tìm tọa độ điểm \(C\).

Xem lời giải » 3 năm trước 107
Câu 15: Trắc nghiệm

Diện tích xung quanh hình nón có bán kính đáy \(r = 3cm\) và độ dài đường sinh \(4cm\) là:

Xem lời giải » 3 năm trước 105

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »