Tìm tập hợp tất cả các giá trị của$m$ để đồ thị hàm số$y = \dfrac{{1 + \sqrt {x + 1} }}{{\sqrt {{x^2} - mx - 3m} }}$ có đúng hai tiệm cận đứng.
A.
$\left( { - \infty ; - 12} \right) \cup \left( {0; + \infty } \right).$
B.
$\left( {0; + \infty } \right)$
C.
$\left[ {\dfrac{1}{4};\dfrac{1}{2}} \right].$
D.
$\left( {0;\dfrac{1}{2}} \right].$
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Chọn $m = 2,$ khi đó hàm số trở thành $y = \dfrac{{1 + \sqrt {x + 1} }}{{\sqrt {{x^2} - 2x - 6} }}$
Rõ ràng $1 + \sqrt {x + 1} > 0{\mkern 1mu} ,\forall x \ge - 1$
Khi đó để hàm số$y = \dfrac{{1 + \sqrt {x + 1} }}{{\sqrt {{x^2} - mx - 3m} }}$ có hai tiệm cận đứng thì phương trình ${x^2} - mx - 3m = 0$ cần có hai nghiệm phân biệt thuộc $\left[ { - 1; + \infty } \right)$ .
Gọi hai nghiệm phân biệt là \({x_1}\) và \({x_2}\).
Khi đó ta phải có
\(\left\{ {\begin{array}{*{20}{l}}{\Delta > 0}\\{{x_1},{x_2} \ge - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{{\left( { - m} \right)}^2} - 4\left( { - 3m} \right) > 0}\\{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) \ge 0}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} + 12m > 0}\\{{x_1}{x_2} + {x_1} + {x_2} + 1 \ge 0}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \in \left( { - \infty ; - 12} \right) \cup \left( {0; + \infty } \right)}\\{-3m + m + 1 \ge 0}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \in \left( { - \infty ; - 12} \right) \cup \left( {0; + \infty } \right)}\\{m \le \dfrac{1}{2}}\end{array}} \right.\) \( \Leftrightarrow m \in \left( {0; \dfrac{1}{2} } \right]\)
Hướng dẫn giải:
- Nếu $\mathop {\lim }\limits_{x \to {x_0}} y = {\rm{\;}} \pm \infty {\rm{\;}} \Rightarrow x = {x_0}$ là TCĐ của đồ thị hàm số.
- Hàm số có TCĐ $x = {x_0}$ khi $x = {x_0}$ là nghiệm của mẫu và không là nghiệm của tử.
(Lưu ý điều kiện xác định của hàm số)
Chọn $m = 2,$ khi đó hàm số trở thành $y = \dfrac{{1 + \sqrt {x + 1} }}{{\sqrt {{x^2} - 2x - 6} }}$
Rõ ràng $1 + \sqrt {x + 1} > 0{\mkern 1mu} ,\forall x \ge - 1$
Khi đó để hàm số$y = \dfrac{{1 + \sqrt {x + 1} }}{{\sqrt {{x^2} - mx - 3m} }}$ có hai tiệm cận đứng thì phương trình ${x^2} - mx - 3m = 0$ cần có hai nghiệm phân biệt thuộc $\left[ { - 1; + \infty } \right)$ .
Gọi hai nghiệm phân biệt là \({x_1}\) và \({x_2}\).
Khi đó ta phải có
\(\left\{ {\begin{array}{*{20}{l}}{\Delta > 0}\\{{x_1},{x_2} \ge - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{{\left( { - m} \right)}^2} - 4\left( { - 3m} \right) > 0}\\{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) \ge 0}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} + 12m > 0}\\{{x_1}{x_2} + {x_1} + {x_2} + 1 \ge 0}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \in \left( { - \infty ; - 12} \right) \cup \left( {0; + \infty } \right)}\\{-3m + m + 1 \ge 0}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \in \left( { - \infty ; - 12} \right) \cup \left( {0; + \infty } \right)}\\{m \le \dfrac{1}{2}}\end{array}} \right.\) \( \Leftrightarrow m \in \left( {0; \dfrac{1}{2} } \right]\)
Hướng dẫn giải:
- Nếu $\mathop {\lim }\limits_{x \to {x_0}} y = {\rm{\;}} \pm \infty {\rm{\;}} \Rightarrow x = {x_0}$ là TCĐ của đồ thị hàm số.
- Hàm số có TCĐ $x = {x_0}$ khi $x = {x_0}$ là nghiệm của mẫu và không là nghiệm của tử.
(Lưu ý điều kiện xác định của hàm số)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình lăng trụ \(ABCD.A'B'C'D'\) có đáy $ABCD$ là hình vuông cạnh bằng $a$. Hình chiếu vuông góc của điểm $A'$ trên mặt phẳng $\left( {ABCD} \right)$ là trung điểm $I$ của cạnh $AB$. Biết \(A'C\) tạo với mặt phẳng đáy một góc \(\alpha \) với \(\tan \alpha = \dfrac{2}{{\sqrt 5 }}\). Thể tích khối chóp $A'.ICD$ là:
Hàm số $y = {x^3} + 2a{x^2} + 4bx - 2018,{\mkern 1mu} {\mkern 1mu} (a,{\mkern 1mu} b \in R)$ đạt cực trị tại $x = - 1$ . Khi đó hiệu $a - b$ là:
Cho hình chóp đều $S.ABCD$ có diện tích đáy là \(16c{m^2}\), diện tích một mặt bên là \(8\sqrt 3 c{m^2}\). Thể tích khối chóp $S.ABCD$ là:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(C,\)\(AB = a\sqrt 5 ,\)\(AC = a.\) Cạnh bên \(SA = 3a\) và vuông góc với mặt phẳng đáy. Thể tích của khối chóp \(S.ABC\) bằng
Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\), \(SA \bot \left( {ABC} \right)\) và \(SA = a\). Tính thể tích khối chóp \(S.ABC\).
Hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ, chọn kết luận đúng:
Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, \(SA \bot (ABCD)\) và \(SA = a\sqrt 6 \). Thể tích của khối chóp $S.ABCD$ bằng
Khối đa diện đều nào sau đây có các mặt không phải là tam giác đều
Cho biết GTLN của hàm số $f\left( x \right)$ trên $\left[ {1;3} \right]$ là $M = - 2$. Chọn khẳng định đúng:
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \sin x$ trên đoạn $\left[ { - \dfrac{\pi }{2}; - \dfrac{\pi }{3}} \right]$ lần lượt là
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(f\left( x \right) = 3\) là:
Một nhà máy cần thiết kế một chiếc bể đựng nước hình trụ bằng tôn có nắp, có thể tích là \(64\pi \left( {{m^3}} \right)\). Tìm bán kính đáy \(r\) của hình trụ sao cho hình trụ được làm ra tốn ít nhiên liệu nhất.
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như hình bên. Số điểm cực trị của hàm số đã cho là:
