Một nhà máy cần thiết kế một chiếc bể đựng nước hình trụ bằng tôn có nắp, có thể tích là \(64\pi \left( {{m^3}} \right)\). Tìm bán kính đáy \(r\) của hình trụ sao cho hình trụ được làm ra tốn ít nhiên liệu nhất.
A.
\(r = 3\left( m \right)\).
B.
\(r = \sqrt[3]{{16}}\left( m \right)\).
C.
\(r = \sqrt[3]{{32}}\left( m \right)\).
D.
\(r = 4\left( m \right)\).
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Gọi hình trụ có chiều cao \(h\), bán kính đáy \(r\).
Ta có: \(V = \pi {r^2}h \Rightarrow h = \dfrac{{64\pi }}{{\pi {r^2}}} = \dfrac{{64}}{{{r^2}}}\)
Để tốn ít nhiên liệu nhất thì diện tích toàn phần nhỏ nhất.
Ta có: \({S_{tp}} = 2{S_{day}} + {S_{xq}} = 2\pi {r^2} + 2\pi rh = 2\pi {r^2} + \dfrac{{128\pi }}{r}\).
Xét hàm số \(f\left( r \right) = 2\pi {r^2} + \dfrac{{128\pi }}{r}\) với \(r > 0\).
Ta có \(f'\left( r \right) = 4\pi r - \dfrac{{128\pi }}{{{r^2}}};f'\left( r \right) = 0 \Leftrightarrow r = \sqrt[3]{{32}}\,\).
Lập bảng biến thiên ta có \(f\left( r \right)\) đạt GTNN khi \(r = \sqrt[3]{{32}}\).
Hướng dẫn giải:
- Lập hàm số diện tích hình trụ theo biến \(r\).
- Tìm GTNN của hàm số và kết luận.
Gọi hình trụ có chiều cao \(h\), bán kính đáy \(r\).
Ta có: \(V = \pi {r^2}h \Rightarrow h = \dfrac{{64\pi }}{{\pi {r^2}}} = \dfrac{{64}}{{{r^2}}}\)
Để tốn ít nhiên liệu nhất thì diện tích toàn phần nhỏ nhất.
Ta có: \({S_{tp}} = 2{S_{day}} + {S_{xq}} = 2\pi {r^2} + 2\pi rh = 2\pi {r^2} + \dfrac{{128\pi }}{r}\).
Xét hàm số \(f\left( r \right) = 2\pi {r^2} + \dfrac{{128\pi }}{r}\) với \(r > 0\).
Ta có \(f'\left( r \right) = 4\pi r - \dfrac{{128\pi }}{{{r^2}}};f'\left( r \right) = 0 \Leftrightarrow r = \sqrt[3]{{32}}\,\).
Lập bảng biến thiên ta có \(f\left( r \right)\) đạt GTNN khi \(r = \sqrt[3]{{32}}\).
Hướng dẫn giải:
- Lập hàm số diện tích hình trụ theo biến \(r\).
- Tìm GTNN của hàm số và kết luận.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình lăng trụ \(ABCD.A'B'C'D'\) có đáy $ABCD$ là hình vuông cạnh bằng $a$. Hình chiếu vuông góc của điểm $A'$ trên mặt phẳng $\left( {ABCD} \right)$ là trung điểm $I$ của cạnh $AB$. Biết \(A'C\) tạo với mặt phẳng đáy một góc \(\alpha \) với \(\tan \alpha = \dfrac{2}{{\sqrt 5 }}\). Thể tích khối chóp $A'.ICD$ là:
Hàm số $y = {x^3} + 2a{x^2} + 4bx - 2018,{\mkern 1mu} {\mkern 1mu} (a,{\mkern 1mu} b \in R)$ đạt cực trị tại $x = - 1$ . Khi đó hiệu $a - b$ là:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(C,\)\(AB = a\sqrt 5 ,\)\(AC = a.\) Cạnh bên \(SA = 3a\) và vuông góc với mặt phẳng đáy. Thể tích của khối chóp \(S.ABC\) bằng
Cho hình chóp đều $S.ABCD$ có diện tích đáy là \(16c{m^2}\), diện tích một mặt bên là \(8\sqrt 3 c{m^2}\). Thể tích khối chóp $S.ABCD$ là:
Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, \(SA \bot (ABCD)\) và \(SA = a\sqrt 6 \). Thể tích của khối chóp $S.ABCD$ bằng
Hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ, chọn kết luận đúng:
Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\), \(SA \bot \left( {ABC} \right)\) và \(SA = a\). Tính thể tích khối chóp \(S.ABC\).
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \sin x$ trên đoạn $\left[ { - \dfrac{\pi }{2}; - \dfrac{\pi }{3}} \right]$ lần lượt là
Khối đa diện đều nào sau đây có các mặt không phải là tam giác đều
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như hình bên. Số điểm cực trị của hàm số đã cho là:

Cho biết GTLN của hàm số $f\left( x \right)$ trên $\left[ {1;3} \right]$ là $M = - 2$. Chọn khẳng định đúng:
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(f\left( x \right) = 3\) là:
Cho khối chóp \(S.ABC\). Trên các cạnh \(SA,SB,SC\) lấy các điểm \(A',B',C'\) sao cho \(A'A = 2SA',B'B = 2SB',C'C = 2SC'\), khi đó tồn tại một phép vị tự biến khối chóp \(S.ABC\) thành khối chóp \(S.A'B'C'\) với tỉ số đồng dạng là: