Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Đặt ${x^2} - \sqrt 2 x = t$ khi đó ${\log _3}|t| = {\log _5}(t + 2)(t > - 2;t \ne 0)$
Đặt ${\log _3}|t| = {\log _5}(t + 2) = a \Rightarrow \left\{ \begin{array}{l}|t| = {3^a}\\t + 2 = {5^a}\end{array} \right. $
$\Rightarrow \left| {{5^a} - 2} \right| = {3^a} \Leftrightarrow \left[ \begin{array}{l}{5^a} - 2 = - {3^a}\\{5^a} - 2 = {3^a}\end{array} \right. \Rightarrow \left[ \begin{array}{l}{5^a} + {3^a} = 2(1)\\{5^a} = {3^a} + 2(2)\end{array} \right.$
Xét (1): $f(a) = {5^a} + {3^a} \Rightarrow f'(a) = {5^a}\ln 5 + {3^a}\ln 3 > 0(\forall a \in R)$ nên hàm số đồng biến trên $R$
Mặt khác $f(0) = 2$ do đó phương trình $f(a) = f(0)$ có 1 nghiệm duy nhất $a = 0 \Rightarrow t = -1$
Suy ra: ${x^2} - \sqrt 2 x + 1 = 0$ (vô nghiệm)
Xét (2) $ \Leftrightarrow {\left( {\dfrac{3}{5}} \right)^a} + 2.{\left( {\dfrac{1}{5}} \right)^a} = 1$.
Đặt $g(a) = {\left( {\dfrac{3}{5}} \right)^a} + 2.{\left( {\dfrac{1}{5}} \right)^a} \Rightarrow g'(a) = {\left( {\dfrac{3}{5}} \right)^a}\ln \dfrac{3}{5} + 2.{\left( {\dfrac{1}{5}} \right)^a}\ln \dfrac{1}{5} < 0(\forall a \in R)$
Nên hàm số $g(a)$ nghịch biến trên $R$ do đó phương trình $g(a) = 1$ có tối đa 1 nghiệm.
Mà $g(a) = g(1)$ nên $ a = 1$
Suy ra $t = 3 \Rightarrow {x^2} - \sqrt 2 x - 3 = 0$ có 2 nghiệm phân biệt thỏa mãn điều kiện
Vậy phương trình đã cho có $2$ nghiệm.
Hướng dẫn giải:
Điều kiện của hàm $lo{g_a}f\left( x \right)$ có nghĩa là: $0 < a \ne 1;f\left( x \right) > 0$ .
Bài toán sử dụng phương pháp hàm số.
Đặt ${x^2} - \sqrt 2 x = t$ khi đó ${\log _3}|t| = {\log _5}(t + 2)(t > - 2;t \ne 0)$
Đặt ${\log _3}|t| = {\log _5}(t + 2) = a \Rightarrow \left\{ \begin{array}{l}|t| = {3^a}\\t + 2 = {5^a}\end{array} \right. $
$\Rightarrow \left| {{5^a} - 2} \right| = {3^a} \Leftrightarrow \left[ \begin{array}{l}{5^a} - 2 = - {3^a}\\{5^a} - 2 = {3^a}\end{array} \right. \Rightarrow \left[ \begin{array}{l}{5^a} + {3^a} = 2(1)\\{5^a} = {3^a} + 2(2)\end{array} \right.$
Xét (1): $f(a) = {5^a} + {3^a} \Rightarrow f'(a) = {5^a}\ln 5 + {3^a}\ln 3 > 0(\forall a \in R)$ nên hàm số đồng biến trên $R$
Mặt khác $f(0) = 2$ do đó phương trình $f(a) = f(0)$ có 1 nghiệm duy nhất $a = 0 \Rightarrow t = -1$
Suy ra: ${x^2} - \sqrt 2 x + 1 = 0$ (vô nghiệm)
Xét (2) $ \Leftrightarrow {\left( {\dfrac{3}{5}} \right)^a} + 2.{\left( {\dfrac{1}{5}} \right)^a} = 1$.
Đặt $g(a) = {\left( {\dfrac{3}{5}} \right)^a} + 2.{\left( {\dfrac{1}{5}} \right)^a} \Rightarrow g'(a) = {\left( {\dfrac{3}{5}} \right)^a}\ln \dfrac{3}{5} + 2.{\left( {\dfrac{1}{5}} \right)^a}\ln \dfrac{1}{5} < 0(\forall a \in R)$
Nên hàm số $g(a)$ nghịch biến trên $R$ do đó phương trình $g(a) = 1$ có tối đa 1 nghiệm.
Mà $g(a) = g(1)$ nên $ a = 1$
Suy ra $t = 3 \Rightarrow {x^2} - \sqrt 2 x - 3 = 0$ có 2 nghiệm phân biệt thỏa mãn điều kiện
Vậy phương trình đã cho có $2$ nghiệm.
Hướng dẫn giải:
Điều kiện của hàm $lo{g_a}f\left( x \right)$ có nghĩa là: $0 < a \ne 1;f\left( x \right) > 0$ .
Bài toán sử dụng phương pháp hàm số.
CÂU HỎI CÙNG CHỦ ĐỀ
Anh A mua 1 chiếc Laptop giá $23$ triệu đồng theo hình thức trả góp, lãi suất mỗi tháng là $0,5\% $. Hỏi mỗi tháng anh A phải trả cho cửa hàng bao nhiêu tiền để sau $6$ tháng anh trả hết nợ?
Trong không gian với hệ tọa độ $Oxyz$, cho mặt phẳng \((P):x - y - z - 1 = 0\) và đường thẳng $d:\dfrac{{x + 1}}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z - 2}}{3}$. Phương trình đường thẳng \(\Delta \) qua \(A(1;1; - 2)\) vuông góc với $d$ và song song với $(P)$ là:
Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(M\left( 1;2;3 \right).\) Mặt phẳng \(\left( P \right)\) đi qua M và cắt các tia \(Ox;\,\,Oy;\,\,Oz\) lần lượt tại các điểm \(A;\,\,B;\,\,C\) \(\left( A;\,\,B;\,\,C\ne O \right)\) sao cho thể tích của tứ diện \(OABC\) nhỏ nhất. Phương trình của mặt phẳng \(\left( P \right)\) là
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x + 4y - 4z - m = 0}}$ có bán kính $R = 5$. Tìm giá trị của $m$?
Khoảng cách từ điểm \(M\left( {2;0;1} \right)\) đến đường thẳng $\Delta :\dfrac{{x - 1}}{1} = \dfrac{y}{2} = \dfrac{{z - 2}}{1}$ là:
Cho ba điểm $A,B,C$ lần lượt biểu diễn các số phức sau \({z_1} = 1 + i;\,{z_2} = {z_1}^2;\,{z_3} = m - i\). Tìm các giá trị thực của $m$ sao cho tam giác $ABC$ vuông tại $B$.
Cho hình chóp tam giác đều $S.ABC$ có cạnh đáy bằng $a$, góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Tính thể tích khối chóp $S.ABC$?
Cho hàm số $y = \dfrac{{x - 2}}{{{x^2} - 2x + m}}\left( C \right).$ Tất cả các giá trị của m để (C) có 3 đường tiệm cận là:
Trong không gian $Oxyz$ cho ba vecto \(\vec a = \left( { - 1;1;0} \right),\vec b = \left( {1;1;0} \right),\vec c = \left( {1;1;1} \right)\). Mệnh đề nào dưới đây sai?
Thể tích vật thể tròn xoay sinh ra khi quay hình phẳng giới hạn bới các đường \(x=\sqrt{y};\,y=-x+2,x=0\) quanh trục $Ox$ có giá trị là kết quả nào sau đây ?
Cho hình chóp $S.ABC$ có $SA \bot (ABC);AC = b,AB = c,\widehat {BAC} = \alpha $. Gọi $B',C'$ lần lượt là hình chiếu vuông góc của $A$ lên $SB,SC$. Tính bán kính mặt cầu ngoại tiếp khối chóp $A.{\rm{ }}BCC'B'$ theo $b,c,\alpha $
Cho hình lăng trụ $ABC.A’B’C’$ có độ dài tất cả các cạnh bằng $a$ và hình chiếu vuông góc của đỉnh $C$ trên $(ABB’A’)$ là tâm của hình bình hành $ABB’A’$. Thể tích của khối lăng trụ là:
Hãy chọn cụm từ (hoặc từ) cho dưới đây để sau khi điền nó vào chỗ trống mệnh đề sau trở thành mệnh đề đúng:
“Số cạnh của một hình đa diện luôn……………….số mặt của hình đa diện ấy”
Gọi \(G\left( {4; - 1;3} \right)\) là tọa độ trọng tâm tam giác \(ABC\) với \(A\left( {0;2; - 1} \right),B\left( { - 1;3;2} \right)\). Tìm tọa độ điểm \(C\).
Cho hai hàm số \(f,\,\,g\) liên tục trên đoạn $\left[ {a;b} \right]$ và số thực $k$ tùy ý. Trong các khẳng định sau, khẳng định nào sai ?