Một cái phễu có dạng hình nón. Chiều cao của phễu là 20 cm. Người ta đổ một lượng nước vào phễu sao cho chiều cao của cột nước trong phễu bằng $10 cm$. Nếu bịt kín miệng phễu rồi lật ngược phễu lên thì chiều cao của cột nước trong phễu gần bằng với giá trị nào sau đây?
A.
\(\left( {20\sqrt[3]{7} - 10} \right)cm\)
B.
\(10\sqrt[3]{7}cm\)
C.
\(\left( {20 - 10\sqrt[3]{7}} \right)cm\)
D.
\(20\sqrt[3]{7}cm\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Gọi thể tích của phễu là $V,$ bán kính đáy phễu là $R,$ bán kính của cột nước có dạng khối nón trong H1 là $R_1$
Ta có: \(\dfrac{{10}}{{20}} = \dfrac{{{R_1}}}{R} = \dfrac{1}{2}\)
Gọi $V_1$ là thể tích của nước ta có:
\(\dfrac{{{V_1}}}{V} = \dfrac{{\dfrac{1}{3}\pi R_1^2.10}}{{\dfrac{1}{3}\pi{R^2}.20}} = \dfrac{1}{2}{\left( {\dfrac{{{R_1}}}{R}} \right)^2}= \dfrac{1}{8} \Rightarrow {V_1} = \dfrac{1}{8}V\)
Sau khi úp ngược phễu lên, thể tích của phần không có nước có dạng khối nón có thể tích là \({V_2} = V - {V_1} = \dfrac{7}{8}V\)
Gọi $h, R_2$ là chiều cao và bán kính đáy của khối nón không chứa nước ở H2 ta có
\(\dfrac{{{R_2}}}{R} = \dfrac{h}{{20}}\) và : \(\dfrac{{{V_2}}}{V}= \dfrac{{\dfrac{1}{3}\pi R_2^2h}}{{\dfrac{1}{3}\pi {R^2}.20}} = \dfrac{7}{8} \Rightarrow {\left( {\dfrac{{{R_2}}}{R}} \right)^2}.\dfrac{h}{{20}} =\dfrac{7}{8} \Leftrightarrow \dfrac{{{h^3}}}{{{{20}^3}}} = \dfrac{7}{8} \Rightarrow h = 10\sqrt[3]{7}\)
\( \Rightarrow \) Chiều cao của cột nước trong H2 là \(20 - 10\sqrt[3]{7}cm\) .
Hướng dẫn giải:
Sử dụng công thức tính thể tích khối nón \({V_n} = \dfrac{1}{3}\pi {R^2}h\) trong đó $R, h$ lần lượt là bán kính đáy và chiều cao của hình nón.
Gọi thể tích của phễu là $V,$ bán kính đáy phễu là $R,$ bán kính của cột nước có dạng khối nón trong H1 là $R_1$
Ta có: \(\dfrac{{10}}{{20}} = \dfrac{{{R_1}}}{R} = \dfrac{1}{2}\)
Gọi $V_1$ là thể tích của nước ta có:
\(\dfrac{{{V_1}}}{V} = \dfrac{{\dfrac{1}{3}\pi R_1^2.10}}{{\dfrac{1}{3}\pi{R^2}.20}} = \dfrac{1}{2}{\left( {\dfrac{{{R_1}}}{R}} \right)^2}= \dfrac{1}{8} \Rightarrow {V_1} = \dfrac{1}{8}V\)
Sau khi úp ngược phễu lên, thể tích của phần không có nước có dạng khối nón có thể tích là \({V_2} = V - {V_1} = \dfrac{7}{8}V\)
Gọi $h, R_2$ là chiều cao và bán kính đáy của khối nón không chứa nước ở H2 ta có
\(\dfrac{{{R_2}}}{R} = \dfrac{h}{{20}}\) và : \(\dfrac{{{V_2}}}{V}= \dfrac{{\dfrac{1}{3}\pi R_2^2h}}{{\dfrac{1}{3}\pi {R^2}.20}} = \dfrac{7}{8} \Rightarrow {\left( {\dfrac{{{R_2}}}{R}} \right)^2}.\dfrac{h}{{20}} =\dfrac{7}{8} \Leftrightarrow \dfrac{{{h^3}}}{{{{20}^3}}} = \dfrac{7}{8} \Rightarrow h = 10\sqrt[3]{7}\)
\( \Rightarrow \) Chiều cao của cột nước trong H2 là \(20 - 10\sqrt[3]{7}cm\) .
Hướng dẫn giải:
Sử dụng công thức tính thể tích khối nón \({V_n} = \dfrac{1}{3}\pi {R^2}h\) trong đó $R, h$ lần lượt là bán kính đáy và chiều cao của hình nón.
CÂU HỎI CÙNG CHỦ ĐỀ
Một khối trụ có bán kính đáy bằng \(2\), chiều cao bằng \(3\). Tính thể tích \(V\) của khối trụ.
Mặt cầu đi qua các đỉnh của một hình đa diện thì nó được gọi là:
Cho khối cầu có đường kính bằng 12. Thể tích khối cầu đã cho bằng
Khi quay hình chữ nhật \(MNPQ\) quanh đường thẳng \(AB\) với \(A,B\) lần lượt là trung điểm của \(MN,PQ\) ta được một hình trụ có đường kính đáy:
Hình lập phương có độ dài cạnh \(a = 6\) thì đường kính mặt cầu ngoại tiếp là:
Số mặt phẳng tiếp diện của mặt cầu tại một điểm thuộc mặt cầu là:
Công thức tính thể tích khối nón biết diện tích đáy \({S_d}\) và đường sinh \(l\) là:
Cho hình nón có bán kính đáy \(r = \sqrt 3 ,\) độ dài đường sinh \(l = 4.\) Tính diện tích xung quanh của hình nón đó?
Cho mặt cầu \(\left( S \right)\) cố định và điểm \(A\) di nguyển trong không gian, vị trí của \(A\) để tập hợp các tiếp điểm của tiếp tuyến với mặt cầu kẻ từ \(A\) là đường tròn lớn là:
Cho mặt cầu \(\left( S \right)\) tâm \(O\) và các điểm \(A\), \(B\), \(C\) nằm trên mặt cầu \(\left( S \right)\) sao cho \(AB = 3\), \(AC = 4\), \(BC = 5\) và khoảng cách từ \(O\) đến mặt phẳng \(\left( {ABC} \right)\) bằng \(1\). Thể tích của khối cầu \(\left( S \right)\) bằng
Đề thi THPT QG - 2021 - mã 102
Cho khối trụ có bán kính đáy \(r = 4\) và chiều cao \(h = 3\). Thể tích của khối trụ đã cho bằng
Tính diện tích toàn phần của hình trụ có đường cao bằng 2 và đường kính đáy bằng 8.
Số hình nón có được khi quay hình sau quanh trục \(BC\) là:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) và \(AB = 2,AC = 4,SA = \sqrt 5 \). Mặt cầu đi qua các đỉnh của hình chóp \(S.ABC\) có bán kính là
Cho tam giác \(ABC\) vuông cân tại \(A\), \(AB = a\). Cho tam giác \(ABC\) quay xung quanh cạnh \(AC\) ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó.