Chọn mệnh đề đúng:
A.
Nếu hai hình \(H\) và \(H'\) bằng nhau thì có một phép tịnh tiến biến hình này thành hình kia.
B.
Nếu có một phép tịnh tiến biến hình \(H'\) thành \(H\) thì chúng bằng nhau.
C.
Nếu hai hình \(H\) và \(H'\) bằng nhau thì có một phép đồng nhất biến hình này thành hình kia.
D.
Nếu hai hình \(H\) và \(H'\) bằng nhau thì chúng trùng nhau.
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
- Nếu có một phép dời hình biến hình \(H'\) thành \(H\) thì hai hình bằng nhau và phép tịnh tiến cũng là một phép dời hình nên B đúng.
- Các đáp án A, C, D đều sai vì hai hình bằng nhau có thể là hợp thành của một số phép dời hình chứ không nhất thiết là chỉ một phép dời hình.
- Nếu có một phép dời hình biến hình \(H'\) thành \(H\) thì hai hình bằng nhau và phép tịnh tiến cũng là một phép dời hình nên B đúng.
- Các đáp án A, C, D đều sai vì hai hình bằng nhau có thể là hợp thành của một số phép dời hình chứ không nhất thiết là chỉ một phép dời hình.
CÂU HỎI CÙNG CHỦ ĐỀ
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng
Tìm $m$ để hàm số $y = \dfrac{{{x^3}}}{3} - 2m{x^2} + 4mx + 2$ nghịch biến trên khoảng $\left( { - 2;0} \right)$.
Cho \(f\left( x \right)\) mà đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ bên
Bất phương trình \(f\left( x \right) > \sin \dfrac{{\pi x}}{2} + m\) nghiệm đúng với mọi \(x \in \left[ { - 1;3} \right]\) khi và chỉ khi:
Cho hàm số $y = {x^4} - 2\left( {2m + 1} \right){x^2} + 4{m^2}$$\left( 1 \right)$. Các giá trị của tham số $m$ để đồ thị hàm số $\left( 1 \right)$ cắt trục hoành tại $4$ điểm phân biệt có hoành độ ${x_1},{x_2},{x_3},{x_4}$ thoả mãn ${x_1}^2 + {x_2}^2 + {x_3}^2 + {x_4}^2 = 6$
Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $2a$. Khoảng cách giữa hai đường thẳng $SA$ và $CD$ bằng \(a\sqrt 3 \). Thể tích khối chóp $S.ABCD$ là:
Cho hàm số \(y = f(x) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình dưới đây

Có tất cả bao nhiêu giá trị nguyên của tham số \(m \in \left( { - 5;5} \right)\) để phương trình \({f^2}(x) - (m + 4)\left| {f(x)} \right| + 2m + 4 = 0\) có \(6\) nghiệm phân biệt
Đồ thị hàm số \(y = \dfrac{{ax + b}}{{2x + c}}\) có tiệm cận ngang \(y = 2\) và tiệm cận đứng \(x = 1\) thì \(a + c\) bằng
Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(A{A_1}\). Thể tích khối chóp \(M.BC{A_1}\) là:
Tìm tất cả các giá trị của $m$ để hàm số $y = - \dfrac{1}{3}{x^3} + \dfrac{{m{x^2}}}{3} + 4$ đạt cực đại tại $x = 2?$
Có bao nhiêu cách chọn ra ba đỉnh từ các đỉnh của một hình lập phương để thu được một tam giác đều ?
Hàm số \(y = \dfrac{{3x - 6}}{{x - 2}}\) xác định khi:
Hàm số $y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)$ có $1$ cực trị nếu và chỉ nếu:
Công thức nào sau đây là công thức tăng trưởng mũ?
Vật thể nào trong các vật thể sau không phải là khối đa diện?