Câu hỏi Đáp án 3 năm trước 114

Cho tứ diện \(ABCD\) có các cạnh \(AB,AC,AD\) đôi một vuông góc với nhau, \(AB = 6a,AC = 7a,AD = 4a\). Gọi \(M,N,P\) lần lượt là trung điểm của các cạnh \(BC,CD,DB\). Thể tích \(V\) của tứ diện \(AMNP\) là:

A.

\(V = \dfrac{{7{a^3}}}{2}\)


B.

\(V = 14{a^3}\)


C.

\(V = \dfrac{{28{a^3}}}{3}\)          


D.

\(V = 7{a^3}\)


Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: d
Lời giải - Đề kiểm tra 15 phút chương 5: Khối đa diện và thể tích - Đề số 1 - ảnh 1

Ta có:

\(ABCD\) là tứ diện vuông tại \(A\) nên \({V_{ABCD}} = \dfrac{1}{6}AB.AC.AD = \dfrac{1}{6}.6a.7a.4a = 28{a^3}\).

Áp dụng công thức tính tỉ lệ thể tích các khối tứ diện ta có:

\(\dfrac{{{V_{DAPN}}}}{{{V_{DABC}}}} = \dfrac{{DA}}{{DA}}.\dfrac{{DP}}{{DB}}.\dfrac{{DN}}{{DC}} = \dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4} \Rightarrow {V_{DAPN}} = \dfrac{1}{4}{V_{DABC}} = \dfrac{1}{4}.28{a^3} = 7{a^3}\)

\(\dfrac{{{V_{BAPM}}}}{{{V_{BADC}}}} = \dfrac{{BA}}{{BA}}.\dfrac{{BP}}{{BD}}.\dfrac{{BM}}{{BC}} = \dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4} \Rightarrow {V_{BAPM}} = \dfrac{1}{4}{V_{BADC}} = \dfrac{1}{4}.28{a^3} = 7{a^3}\)

\(\dfrac{{{V_{CAMN}}}}{{{V_{CABD}}}} = \dfrac{{CA}}{{CA}}.\dfrac{{CM}}{{CB}}.\dfrac{{CN}}{{CD}} = \dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4} \Rightarrow {V_{CAMN}} = \dfrac{1}{4}{V_{CABD}} = \dfrac{1}{4}.28{a^3} = 7{a^3}\)

Do đó \({V_{AMNP}} = {V_{ABCD}} - {V_{DAPN}} - {V_{BAPM}} - {V_{CAMN}} = 28{a^3} - 7{a^3} - 7{a^3} - 7{a^3} = 7{a^3}\)

Hướng dẫn giải:

Tính thể tích các khối chóp ${{V_{DAPN}}}$, ${{V_{BAPM}}}$, ${V_{CAMN}}$ và $ V_{ABCD}$ rồi tính ${V_{AMNP}} = {V_{ABCD}} - {V_{DAPN}} $ $- {V_{BAPM}} - {V_{CAMN}}$

Giải thích thêm:

- Một số em sẽ tính nhầm tỉ lệ thể tích khối tứ diện \(AMNP\) và \(ABCD\) là \(\dfrac{1}{3}\) nên chọn nhầm đáp án C là sai.

- Cách giải ở trên hướng dẫn các em tính thể tích tứ diện bằng phương pháp cộng trừ thể tích (phân chia khối đa diện) và cách áp dụng công thức tỉ lệ thể tích.

Ngoài ra, bài toán còn một cách giải khác, các em có thể tham khảo các bước giải như sau:

+ Tính thể tích của tứ diện \(ABCD\)

+ So sánh diện tích các tam giác \(MNP\) và \(BCD\), cụ thể \({S_{MNP}} = \dfrac{1}{4}{S_{BCD}}\)  

+ So sánh thể tích \({V_{A.MNP}}\) và \({V_{A.BCD}}\), cụ thể:

Hai tứ diện có chung chiều cao kẻ từ \(A\) và diện tích đáy \({S_{MNP}} = \dfrac{1}{4}{S_{BCD}}\)

Do đó \({V_{A.MNP}} = \dfrac{1}{4}{V_{A.BCD}}\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Vật thể nào trong các vật thể sau không phải là khối đa diện?

Đề kiểm tra 15 phút chương 5: Khối đa diện và thể tích - Đề số 1 - ảnh 1

Xem lời giải » 3 năm trước 102
Câu 2: Trắc nghiệm

Trong các hình dưới đây, hình nào là khối đa diện?

Đề kiểm tra 15 phút chương 5: Khối đa diện và thể tích - Đề số 1 - ảnh 1

Xem lời giải » 3 năm trước 96
Câu 3: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\). Biết \(AC = a\sqrt 2 \), cạnh \(SC\) tạo với đáy một góc \({60^0}\) và diện tích tứ giác \(ABCD\) là \(\dfrac{{3{a^2}}}{2}\). Gọi \(H\) là hình chiếu của \(A\) trên cạnh \(SC\). Tính thể tích khối chóp \(H.ABCD\).

Xem lời giải » 3 năm trước 95
Câu 4: Trắc nghiệm

Trong các mệnh đề sau, mệnh đề nào sai?

Xem lời giải » 3 năm trước 92
Câu 5: Trắc nghiệm

Chọn khẳng định sai.

Xem lời giải » 3 năm trước 92
Câu 6: Trắc nghiệm

Cho hình chóp tứ giác đều $S.ABCD$ có chiều cao $h$, góc ở đỉnh của mặt bên bằng \({60^0}\). Thể tích hình chóp là:

Xem lời giải » 3 năm trước 92
Câu 7: Trắc nghiệm

Cho bốn hình sau đây. Mệnh đề nào sau đây sai:

Đề kiểm tra 15 phút chương 5: Khối đa diện và thể tích - Đề số 1 - ảnh 1

Xem lời giải » 3 năm trước 91
Câu 8: Trắc nghiệm

Cho khối đa diện lồi có số đỉnh, số mặt và số cạnh lần lượt là \(D,M,C\). Chọn mệnh đề đúng:

Xem lời giải » 3 năm trước 89
Câu 9: Trắc nghiệm

Cho hình chóp đều $S.ABCD$ có cạnh bên và cạnh đáy bằng $a$. Thể tích của khối chóp $S.ABCD$ là:

Xem lời giải » 3 năm trước 87
Câu 10: Trắc nghiệm

Cho hình chóp \(S.ABC\) có \(SA \bot SB,SB \bot SC,SA \bot SC;SA = 2a,SB = b,SC = c\). Thể tích khối chóp là:

Xem lời giải » 3 năm trước 86
Câu 11: Trắc nghiệm

Cho khối chóp \(S.ABC\). Trên các cạnh \(SA,SB,SC\) lấy các điểm \(A',B',C'\) sao cho \(A'A = 2SA',B'B = 2SB',C'C = 2SC'\), khi đó tồn tại một phép vị tự biến khối chóp \(S.ABC\) thành khối chóp \(S.A'B'C'\) với tỉ số đồng dạng là:

Xem lời giải » 3 năm trước 79

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »