Cho số phức $z = 1 + \sqrt {3}i $. Khi đó
A.
$\dfrac{1}{z} = \dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}i$
B.
$\dfrac{1}{z} = \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i$
C.
$\dfrac{1}{z} = \dfrac{1}{4} + \dfrac{{\sqrt 3 }}{4}i$.
D.
$\dfrac{1}{z} = \dfrac{1}{4} - \dfrac{{\sqrt 3 }}{4}i$.
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Ta có: $z = 1 + \sqrt 3 i \Rightarrow \dfrac{1}{z} = \dfrac{1}{{1 + \sqrt 3 i}} = \dfrac{{1 - \sqrt 3 i}}{{(1 - \sqrt 3 i)(1 + \sqrt 3 i)}} $
$= \dfrac{{1 - \sqrt 3 i}}{{{1^2} - {{(\sqrt 3 i)}^2}}} = \dfrac{{1 - \sqrt 3 i}}{4} = \dfrac{1}{4} - \dfrac{{\sqrt 3 }}{4}i$
Hướng dẫn giải:
Cho số phức $ z = a + bi\Rightarrow \dfrac{1}{z} = \dfrac{1}{{a + bi}} = \dfrac{{a - bi}}{{(a - bi)(a + bi)}} = \dfrac{{a - bi}}{{{a^2} - {{(bi)}^2}}} = \dfrac{{a - bi}}{{{a^2} + {b^2}}}$
Giải thích thêm:
Một số em thường nhầm khi tính toán $1^2-(\sqrt{3}i)^2=1-3=-2$ là sai.
Ta có: $z = 1 + \sqrt 3 i \Rightarrow \dfrac{1}{z} = \dfrac{1}{{1 + \sqrt 3 i}} = \dfrac{{1 - \sqrt 3 i}}{{(1 - \sqrt 3 i)(1 + \sqrt 3 i)}} $
$= \dfrac{{1 - \sqrt 3 i}}{{{1^2} - {{(\sqrt 3 i)}^2}}} = \dfrac{{1 - \sqrt 3 i}}{4} = \dfrac{1}{4} - \dfrac{{\sqrt 3 }}{4}i$
Hướng dẫn giải:
Cho số phức $ z = a + bi\Rightarrow \dfrac{1}{z} = \dfrac{1}{{a + bi}} = \dfrac{{a - bi}}{{(a - bi)(a + bi)}} = \dfrac{{a - bi}}{{{a^2} - {{(bi)}^2}}} = \dfrac{{a - bi}}{{{a^2} + {b^2}}}$
Giải thích thêm:
Một số em thường nhầm khi tính toán $1^2-(\sqrt{3}i)^2=1-3=-2$ là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Kí hiệu \(a,b\) lần lượt là phần thực và phần ảo của số phức \(3 - 2\sqrt 2 i\). Tìm \(a,b.\)
Cho phương trình \(2{z^2} - 3iz + i = 0\). Chọn mệnh đề đúng:
Cho số phức $z = 1 + i + {i^2} + {i^3} + ... + {i^9}$. Khi đó:
Cho số phức $z = a + bi$ với $a,b$ là hai số thực khác $0$. Một phương trình bậc hai với hệ số thực nhận \(\bar z\) làm nghiệm với mọi $a,b$ là:
Cho phương trình \({z^2} - 2z + 2 = 0\) . Mệnh đề nào sau đây là sai?
Tìm số phức có phần thực bằng $12$ và mô đun bằng $13$:
Tính môđun của số phức $z$ biết $\overline z = \left( {4 - 3i} \right)\left( {1 + i} \right)$.
Cho số phức $z = 3-2i$. Tìm phần thực và phần ảo của số phức \(\overline z \)
Gọi \({z_1};{z_2};{z_3};{z_4}\) là bốn nghiệm phức của phương trình \(2{z^4} - 3{z^2} - 2 = 0\). Tổng \(T = |{z_1}{|^2} + |{z_2}{|^2} + |{z_3}{|^2} + |{z_4}{|^2}\) bằng:
Kí hiệu ${z_1},{z_2},{z_3},{z_4}$ là bốn nghiệm phức của phương trình ${z^4} - {z^2} - 12 = 0$. Tính tổng $T = \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_3}} \right| + \left| {{z_4}} \right|$.