Câu hỏi Đáp án 3 năm trước 97

Cho hình lăng trụ \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A.\) Cạnh \(BC = 2a\) và \(\angle ABC = {60^0}.\) Biết tứ giác \(BCC'B'\) là hình thoi có \(\angle B'BC\) nhọn. Mặt phẳng \(\left( {BCC'B'} \right)\) vuông góc với \(\left( {ABC} \right)\) và mặt phẳng \(\left( {ABB'A'} \right)\) tạo với \(\left( {ABC} \right)\) góc \({45^0}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng:

A. \(\dfrac{{\sqrt 7 {a^3}}}{7}\)

B. \(\dfrac{{3\sqrt 7 {a^3}}}{7}\)

Đáp án chính xác ✅

C. \(\dfrac{{6\sqrt 7 {a^3}}}{7}\)

D. \(\dfrac{{\sqrt 7 {a^3}}}{{21}}\)

Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: b

Trong \(\left( {BCC'B'} \right)\) kẻ \(B'H \bot BC\,\,\left( {H \in BC} \right)\) (do \(\angle B'BC\) nhọn).

Trong \(\left( {ABC} \right)\) kẻ \(HK\parallel AC \Rightarrow HK \bot AB\) ta có: \(\left\{ \begin{array}{l}AB \bot HK\\AB \bot B'H\end{array} \right. \Rightarrow AB \bot \left( {B'HK} \right) \Rightarrow AB \bot B'K\).

Ta có: \(\left\{ \begin{array}{l}\left( {ABB'A'} \right) \cap \left( {ABC} \right) = AB\\B'K \subset \left( {ABB'A'} \right),\,\,B'K \bot AB\\HK \subset \left( {ABC} \right),\,\,HK \bot AB\end{array} \right.\) \( \Rightarrow \angle \left( {\left( {ABB'A'} \right);\left( {ABC} \right)} \right) = \angle \left( {B'K;HK} \right) = \angle B'HK = {45^0}\).

\( \Rightarrow \Delta B'HK\) vuông cân tại \(H \Rightarrow B'H = HK = x\).

Xét tam giác vuông \(BB'H\) có: \(BH = \sqrt {BB{'^2} - BH{'^2}}  = \sqrt {4{a^2} - {x^2}} \).

Xét tam giác vuông \(ABC\) có: \(AC = BC.\sin {60^0} = a\sqrt 3 \), \(AB = BC.\cos {60^0} = a\).

Áp dụng định lí Ta-lét ta có: \(\dfrac{{BH}}{{BC}} = \dfrac{{HK}}{{AC}} \Rightarrow \dfrac{{\sqrt {4{a^2} - {x^2}} }}{{2a}} = \dfrac{x}{{a\sqrt 3 }}\)

\(\begin{array}{l} \Leftrightarrow 3\left( {4{a^2} - {x^2}} \right) = 4{x^2}\\ \Leftrightarrow 12{a^2} - 3{x^2} = 4{x^2}\\ \Leftrightarrow {x^2} = \dfrac{{12{a^2}}}{7}\\ \Leftrightarrow x = \dfrac{{2a\sqrt {21} }}{7} = B'H\end{array}\)

\({S_{\Delta ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}.a.a\sqrt 3  = \dfrac{{{a^2}\sqrt 3 }}{2}\).

Vậy \({V_{ABC.A'B'C'}} = B'H.{S_{\Delta ABC}} = \dfrac{{2a\sqrt {21} }}{7}.\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{3{a^3}\sqrt 7 }}{7}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\). Biết \(AC = a\sqrt 2 \), cạnh \(SC\) tạo với đáy một góc \({60^0}\) và diện tích tứ giác \(ABCD\) là \(\dfrac{{3{a^2}}}{2}\). Gọi \(H\) là hình chiếu của \(A\) trên cạnh \(SC\). Tính thể tích khối chóp \(H.ABCD\).

Xem lời giải » 3 năm trước 116
Câu 2: Trắc nghiệm

Trong một hình đa diện lồi, mỗi cạnh là cạnh chung của tất cả bao nhiêu mặt?

Xem lời giải » 3 năm trước 97
Câu 3: Trắc nghiệm

Có tất cả bao nhiêu loại khối đa diện đều?

Xem lời giải » 3 năm trước 96
Câu 4: Trắc nghiệm

Mệnh đề nào sau đây là mệnh đề đúng? 

Xem lời giải » 3 năm trước 95
Câu 5: Trắc nghiệm

Cho hình chóp tam giác đều $S.ABC$ có cạnh đáy bằng $a$ và mặt bên hợp với đáy một góc \({60^0}\). Thể tích khối chóp $S.ABC$ là:

Xem lời giải » 3 năm trước 95
Câu 6: Trắc nghiệm

Đề thi THPT QG - 2021 - mã 101

Cho khối hộp chữ nhật \(ABCD.A'B'C'D'\) có đáy là hình vuông, \(BD = 2a,\) góc giữa hai mặt phẳng \(\left( {A'B{\rm{D}}} \right)\) và \(\left( {ABCD} \right)\) bằng \({30^0}\). Thể tích của khối hộp chữ nhật đã cho bằng

Xem lời giải » 3 năm trước 94
Câu 7: Trắc nghiệm

Cho hình lăng trụ \(ABC.A'B'C'\) có \(AB = 2a,AC = a,AA' = \dfrac{{a\sqrt {10} }}{2},\widehat {BAC} = {120^0}\). Hình chiếu vuông góc của $C’$ lên $(ABC)$ là trung điểm của cạnh $BC$. Tính thể tích khối lăng trụ \(ABC.A'B'C'\) theo $a$?

Xem lời giải » 3 năm trước 92
Câu 8: Trắc nghiệm

Cho lăng trụ $ABC.A'B'C'$ có đáy $ABC$  là tam giác đều cạnh $a$, và \(A'A = A'B = A'C = a\sqrt {\dfrac{7}{{12}}} \) . Thể tích khối lăng trụ \(ABC.A'B'C'\) theo $a$ là:

Xem lời giải » 3 năm trước 92
Câu 9: Trắc nghiệm

Khối chóp tam giác có độ dài 3 cạnh xuất phát từ một đỉnh là \(a,\,\,2a,\,\,3a\) có thể tích lớn nhất bằng

Xem lời giải » 3 năm trước 91
Câu 10: Trắc nghiệm

Khối đa diện lồi có \(8\) đỉnh và \(6\) mặt thì có số cạnh là:

Xem lời giải » 3 năm trước 91
Câu 11: Trắc nghiệm

Phép dời hình biến mặt phẳng thành:

Xem lời giải » 3 năm trước 89
Câu 12: Trắc nghiệm

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A,\,\,AB = a,\) cạnh bên \(SC = 3a\) và \(SC\) vuông góc với mặt phẳng đáy. Thể tích khối chóp \(S.ABC\) bằng:

Xem lời giải » 3 năm trước 88
Câu 13: Trắc nghiệm

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \({V_1};{V_2}\) lần lượt là thể tích của khối tứ diện \(ACB'D'\) và khối hộp \(ABCD.A'B'C'D'.\) Tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\) bằng

Xem lời giải » 3 năm trước 87
Câu 14: Trắc nghiệm

Cho khối đa diện lồi có số đỉnh, số mặt và số cạnh lần lượt là \(D,M,C\). Chọn mệnh đề đúng:

Xem lời giải » 3 năm trước 86
Câu 15: Trắc nghiệm

Cho lăng trụ xiên tam giác $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh $a$,  biết cạnh bên là \(a\sqrt 3 \) và hợp với đáy $ABC$ một góc \({60^0}\). Thể tích khối lăng trụ là:

Xem lời giải » 3 năm trước 84

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »