Câu hỏi Đáp án 3 năm trước 81

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA\) vuông góc với mặt phẳng đáy \(\left( {ABCD} \right)\) và \(SA = a\). Điểm $M$ thuộc cạnh $SA$ sao cho \(\dfrac{{SM}}{{SA}} = k\). Xác định $k$ sao cho mặt phẳng \(\left( {BMC} \right)\) chia khối chóp \(S.ABCD\) thành hai phần có thể tích bằng nhau.

A.

\(k = \dfrac{{ - 1 + \sqrt 3 }}{2}\)     


B.

\(k = \dfrac{{ - 1 + \sqrt 5 }}{2}\)     


Đáp án chính xác ✅

C.

\(k = \dfrac{{ - 1 + \sqrt 2 }}{2}\)


D.

\(k = \dfrac{{1 + \sqrt 5 }}{4}\)


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: b
Lời giải - Đề kiểm tra 1 tiết chương 5: Khối đa diện và thể tích - Đề số 1 - ảnh 1

Vì $BC//AD$ nên mặt phẳng $\left( {BMC} \right)$ cắt $\left( {SAD} \right)$ theo đoạn thẳng $MN//AD\left( {N \in SD} \right)$

Vì \(MN//AD \Rightarrow \dfrac{{SM}}{{SA}} = \dfrac{{SN}}{{SD}} = k\)

$\begin{array}{l}\dfrac{{{V_{S.MBC}}}}{{{V_{S.ABC}}}} = \dfrac{{SM}}{{SA}} = k \Rightarrow {V_{S.MBC}} = k.{V_{S.ABC}} = \dfrac{k}{2}.{V_{S.ABCD}}\\\dfrac{{{V_{S.MNC}}}}{{{V_{S.ADC}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SN}}{{SD}} = {k^2} \Rightarrow {V_{S.MNC}} = {k^2}.{V_{S.ADC}} = \dfrac{{{k^2}}}{2}.{V_{S.ABCD}}\\ \Rightarrow {V_{S.MBCN}} = {V_{S.MBC}} + {V_{S.MNC}} = \left( {\dfrac{k}{2} + \dfrac{{{k^2}}}{2}} \right){V_{S.ABCD}}\end{array}$

Để mặt phẳng $\left( {BMNC} \right)$ chia hình chóp thành 2 phần có thể tích bằng nhau thì $\dfrac{k}{2} + \dfrac{{{k^2}}}{2} = \dfrac{1}{2} \Leftrightarrow {k^2} + k - 1 = 0 \Leftrightarrow k = \dfrac{{ - 1 + \sqrt 5 }}{2}$ do $k > 0$.

Hướng dẫn giải:

- Xác định thiết diện của hình chóp cắt bởi mặt phẳng \(\left( {BMC} \right)\).

- Chia khối chóp \(S.BCNM\) thành hai phần \(S.BCM\) và \(S.CNM\) và tính tỉ lệ thể tích của hai khối chóp đó với các khối chóp \(S.ABC\) và \(S.ACD\).

- Tính tỉ lệ thể tích của khối chóp \(S.BCNM\) với khối chóp \(S.ABCD\), từ đó dựa vào điều kiện đề bài tìm \(k\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho khối chóp \(S.ABC\). Trên các cạnh \(SA,SB,SC\) lấy các điểm \(A',B',C'\) sao cho \(A'A = 2SA',B'B = 2SB',C'C = 2SC'\), khi đó tồn tại một phép vị tự biến khối chóp \(S.ABC\) thành khối chóp \(S.A'B'C'\) với tỉ số đồng dạng là:

Xem lời giải » 3 năm trước 95
Câu 2: Trắc nghiệm

Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $2a$. Khoảng cách giữa hai đường thẳng $SA$ và $CD$ bằng \(a\sqrt 3 \). Thể tích khối chóp $S.ABCD$ là:

Xem lời giải » 3 năm trước 95
Câu 3: Trắc nghiệm

Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?

Xem lời giải » 3 năm trước 95
Câu 4: Trắc nghiệm

Cho khối chóp tam giác \(S.ABC\), trên các cạnh \(SA,SB,SC\) lần lượt lấy các điểm \(A',B',C'\). Khi đó:

Xem lời giải » 3 năm trước 91
Câu 5: Trắc nghiệm

Cho hình chóp \(S.ABC\) đáy \(ABC\) là tam giác vuông tại \(A,AB = a,AC = a\sqrt 3 \). Tam giác $SBC$ đều nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp $S.ABC$

Xem lời giải » 3 năm trước 91
Câu 6: Trắc nghiệm

Cho hình lăng trụ $ABC.A'B'C'$ có đáy $ABC$ là tam giác cân \(AB = AC = a;\widehat {BAC} = {120^0}\) và $AB'$ vuông góc với $\left( {A'B'C'} \right)$ . Mặt phẳng $\left( {AA'C'} \right)$ tạo với mặt phẳng $\left( {A'B'C'} \right)$ một góc \({30^0}\). Thể tích khối lăng trụ $ABC.A'B'C'$ là:

Xem lời giải » 3 năm trước 89
Câu 7: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Đường thẳng \(SC\) tạo với đáy góc \({45^0}\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\). Thể tích của khối chóp \(S.MCDN\) là:

Xem lời giải » 3 năm trước 88
Câu 8: Trắc nghiệm

Khối đa diện đều có $20$ mặt thì có bao nhiêu cạnh?

Xem lời giải » 3 năm trước 85
Câu 9: Trắc nghiệm

Khối đa diện đều loại \(\left\{ {n;p} \right\}\) thì \(n\) là:

Xem lời giải » 3 năm trước 85
Câu 10: Trắc nghiệm

Vật thể nào trong các vật thể sau không phải là khối đa diện?

Đề kiểm tra 1 tiết chương 5: Khối đa diện và thể tích - Đề số 1 - ảnh 1

Xem lời giải » 3 năm trước 84
Câu 11: Trắc nghiệm

Cho hai hình chóp tam giác đều cạnh đáy bằng \(a\). Cần bổ sung thêm điều kiện gì để hai hình chóp đó bằng nhau?

Xem lời giải » 3 năm trước 84
Câu 12: Trắc nghiệm

Phép dời hình biến đoạn thẳng thành:

Xem lời giải » 3 năm trước 84
Câu 13: Trắc nghiệm

Trong các kí hiệu sau, kí hiệu nào không phải của khối đa diện đều?

Xem lời giải » 3 năm trước 83
Câu 14: Trắc nghiệm

Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(A{A_1}\). Thể tích khối chóp \(M.BC{A_1}\) là:

Xem lời giải » 3 năm trước 83
Câu 15: Trắc nghiệm

Cho hình lăng trụ $ABC.A’B’C’$ có độ dài tất cả các cạnh bằng $a$ và hình chiếu vuông góc của đỉnh $C$ trên $(ABB’A’)$ là tâm của hình bình hành $ABB’A’$. Thể tích của khối lăng trụ là:

Xem lời giải » 3 năm trước 82

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »